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ЧФ «ХАЛЫҚ»

В 2016 году для развития и улучшения качества жизни казахстанцев был 
создан частный Благотворительный фонд «Халык». За годы своей деятельности 
на реализацию благотворительных проектов в областях образования и науки, 
социальной защиты, культуры, здравоохранения и спорта, Фонд выделил 
более 45 миллиардов тенге.

  Особое внимание Благотворительный фонд «Халык» уделяет 
образовательным программам, считая это направление одним из ключевых 
в своей деятельности. Оказывая поддержку отечественному образованию, 
Фонд вносит свой посильный вклад в развитие качественного образования 
в Казахстане. Тем самым способствуя росту числа людей, способных 
менять жизнь в стране к лучшему – профессионалов в различных сферах, 
потенциальных лидеров и «великих умов». Одной из значимых инициатив 
фонда «Халык» в образовательной сфере стал проект Ozgeris powered by Halyk 
Fund – первый в стране бизнес-инкубатор для учащихся 9-11 классов, который 
помогает развивать необходимые в современном мире предпринимательские 
навыки. Так, на содействие малому бизнесу школьников было выделено более 
200 грантов. Для поддержки талантливых и мотивированных детей Фонд 
неоднократно выделял гранты на обучение в Международной школе «Мирас» 
и в Astana IT University, а также помог казахстанским школьникам принять 
участие в престижном конкурсе «USTEM Robotics» в США. Авторские 
работы в рамках проекта «Тәлімгер», которому Фонд оказал поддержку, легли 
в основу учебной программы, учебников и учебно-методических книг по 
предмету «Основы предпринимательства и бизнеса», преподаваемого в 10-11 
классах казахстанских школ и колледжей. 

  Помимо помощи школьникам, учащимся колледжей и студентам Фонд 
считает важным внести свой вклад в повышение квалификации педагогов, 
совершенствование их знаний и навыков, поскольку именно они являются 
проводниками знаний будущих поколений казахстанцев. При поддержке 
Фонда «Халык» в южной столице был организован ежегодный городской 
конкурс педагогов «Almaty Digital Ustaz. 

  Важной инициативой стал реализуемый проект по обучению основам 
финансовой грамотности преподавателей из восьми областей Казахстана, 
что должно оказать существенное влияние на воспитание финансовой 
грамотности и предпринимательского мышления у нового поколения граждан 
страны. 



  Необходимую помощь Фонд «Халык» оказывает и тем, кто особенно 
остро в ней нуждается. В рамках социальной защиты населения активно 
проводится работа по поддержке детей, оставшихся без родителей, детей и 
взрослых из социально уязвимых слоев населения, людей с ограниченными 
возможностями, а также обеспечению нуждающихся социальным жильем, 
строительству социально важных объектов, таких как детские сады, детские 
площадки и физкультурно-оздоровительные комплексы. 

 В копилку добрых дел Фонда «Халык» можно добавить оказание помощи 
детскому спорту, куда относится поддержка в развитии детского футбола и 
карате в нашей стране. Жизненно важную помощь Благотворительный фонд 
«Халык» оказал нашим соотечественникам во время   недавней пандемии 
COVID-19. Тогда, в разгар тяжелой борьбы с коронавирусной инфекцией 
Фонд выделил свыше 11 миллиардов тенге на приобретение необходимого 
медицинского оборудования и дорогостоящих медицинских препаратов, 
автомобилей скорой медицинской помощи и средств защиты, адресную 
материальную помощь социально уязвимым слоям населения и денежные 
выплаты медицинским работникам.

В 2023 году наряду с другими проектами, нацеленными на повышение 
благосостояния казахстанских граждан Фонд решил уделить особое внимание 
науке, поскольку она является частью общественной культуры, а уровень ее 
развития определяет уровень развития государства. 

Поддержка Фондом выпуска журналов Национальной Академии наук 
Республики Казахстан, которые входят в международные фонды Scopus и 
Wos и в которых публикуются статьи отечественных ученых, докторантов 
и магистрантов, а также научных сотрудников высших учебных заведений 
и научно-исследовательских институтов нашей страны является не менее 
значимым вкладом Фонда в развитие казахстанского общества.

С уважением, 
Благотворительный Фонд «Халык»!
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Б А С   Р Е Д А К Т О Р:
БЕНБЕРИН Валерий Васильевич, медицина ғылымдарының докторы, профессор, ҚР ҰҒА академигі, 

Қазақстан Республикасы Президенті Іс Басқармасы Медициналық орталығының директоры (Алматы, 
Қазақстан), H = 11

Р Е Д А К Ц И Я Л Ы Қ   А Л Қ А:
РАМАЗАНОВ Тілекқабыл Сәбитұлы, (бас редактордың орынбасары), физика-математика ғылымдарының 

докторы, профессор, ҚР ҰҒА академигі (Алматы, Қазақстан), Н = 26
РАМАНҚҰЛОВ  Ерлан Мирхайдарұлы,  (бас редактордың орынбасары), профессор, ҚР ҰҒА 

корреспондент-мүшесі, Ph.D биохимия және молекулалық генетика саласы бойынша Ұлттық биотехнология 
орталығының бас директоры (Нұр-Сұлтан, Қазақстан), H = 23

САНГ-СУ Квак, PhD (биохимия, агрохимия), профессор, Корей биоғылым және биотехнология ғылыми-
зерттеу институты (KRIBB), өсімдіктердің инженерлік жүйелері ғылыми-зерттеу орталығының бас ғылыми 
қызметкері, (Дэчон, Корея), H = 34

БЕРСІМБАЕВ Рахметқажы Ескендірұлы, биология ғылымдарының докторы, профессор, ҚР ҰҒА 
академигі, Еуразия ұлттық университеті. Л.Н. Гумилев (Нұр-Сұлтан, Қазақстан), H = 12

ӘБИЕВ Руфат, техника ғылымдарының докторы (биохимия), профессор, Санкт-Петербург мемлекеттік 
технологиялық институты «Химиялық және биотехнологиялық аппаратураны оңтайландыру» кафедрасының 
меңгерушісі, (Санкт-Петербург, Ресей), H = 14

ЛОКШИН Вячеслав Нотанович, медицина ғылымдарының докторы, профессор, ҚР ҰҒА академигі, 
«PERSONA» халықаралық клиникалық репродуктология орталығының директоры (Алматы, Қазақстан), H = 8

СЕМЕНОВ Владимир Григорьевич, биология ғылымдарының докторы, профессор, Чуваш 
республикасының еңбек сіңірген ғылым қайраткері, «Чуваш мемлекеттік аграрлық университеті» Федералдық 
мемлекеттік бюджеттік жоғары білім беру мекемесі Акушерлік және терапия кафедрасының меңгерушісі, 
(Чебоксары, Ресей), H = 23

ФАРУК Асана Дар, Хамдар аль-Маджида Хамдард университетінің шығыс медицина факультеті, Шығыс 
медицинасы колледжінің профессоры, (Карачи, Пәкістан), H = 21

ЩЕПЕТКИН Игорь Александрович, медицина ғылымдарының докторы, Монтана штаты университетінің 
профессоры (Монтана, АҚШ), H = 27

КАЛАНДРА Пьетро, PhD (физика), наноқұрылымды материалдарды зерттеу институтының профессоры 
(Рим, Италия), H = 26

МАЛЬМ Анна, фармацевтика ғылымдарының докторы, профессор, Люблин медицина университетінің 
фармацевтика факультетінің деканы (Люблин, Польша), H = 22

БАЙМҰҚАНОВ Дастан Асылбекұлы, ауыл шаруашылығы ғылымдарының докторы, ҚР ҰҒА корреспон
дент мүшесі, "Мал шаруашылығы және ветеринария ғылыми-өндірістік орталығы" ЖШС мал шаруашылығы 
және ветеринарлық медицина департаментінің бас ғылыми қызметкері (Нұр-Сұлтан, Қазақстан), Н=1

ТИГИНЯНУ Ион Михайлович, физика-математика ғылымдарының докторы, академик, Молдова Ғылым 
Академиясының президенті, Молдова техникалық университеті (Кишинев, Молдова), Н = 42

ҚАЛИМОЛДАЕВ Мақсат Нұрәділұлы, физика-математика ғылымдарының докторы, профессор, ҚР 
ҰҒА академигі (Алматы, Қазақстан), Н = 7

БОШКАЕВ Қуантай Авғазыұлы,  Ph.D. Теориялық және ядролық физика кафедрасының доценті, әл-
Фараби  атындағы Қазақ ұлттық университеті (Алматы, Қазақстан), Н = 10

QUEVEDO Hemando, профессор, Ядролық ғылымдар институты (Мехико, Мексика), Н = 28
ЖҮСІПОВ Марат Абжанұлы,  физика-математика ғылымдарының докторы, теориялық және ядролық 

физика кафедрасының профессоры, әл-Фараби  атындағы Қазақ ұлттық университеті (Алматы, Қазақстан), Н = 7
КОВАЛЕВ Александр Михайлович,  физика-математика ғылымдарының докторы, Украина ҰҒА 

академигі, Қолданбалы математика және механика институты (Донецк, Украина), Н = 5
ТАКИБАЕВ Нұрғали Жабағаұлы,  физика-математика ғылымдарының докторы, профессор, ҚР ҰҒА 

академигі, әл-Фараби  атындағы Қазақ ұлттық университеті (Алматы, Қазақстан),  Н = 5
ХАРИН Станислав Николаевич,  физика-математика ғылымдарының докторы, профессор, ҚР ҰҒА 

академигі, Қазақстан-Британ техникалық университеті (Алматы, Қазақстан), Н = 10
ДАВЛЕТОВ Асқар Ербуланович,  физика-математика ғылымдарының докторы, профессор, ҚР ҰҒА 

академигі, әл-Фараби  атындағы Қазақ ұлттық университеті (Алматы, Қазақстан), Н = 12
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Г Л А В Н Ы Й   Р Е Д А К Т О Р: 
БЕНБЕРИН Валерий Васильевич,  доктор медицинских наук,  профессор, академик НАН РК, директор 

Медицинского центра Управления делами Президента Республики Казахстан (Алматы, Казахстан),  H = 11

Р Е Д А К Ц И О Н Н А Я   К О Л Л Е Г И Я:
РАМАЗАНОВ Тлеккабул Сабитович,  (заместитель главного редактора), доктор физико-математических 

наук, профессор, академик НАН РК (Алматы, Казахстан), Н = 26
РАМАНКУЛОВ Ерлан Мирхайдарвич, (заместитель главного редактора), профессор, член-корреспондент 

НАН РК,  Ph.D в области биохимии и молекулярной генетики,  Генеральный директор Национального центра 
биотехнологии (Нур-Султан, Казахстан), H = 23

САНГ-СУ Квак, доктор философии (Ph.D, биохимия, агрохимия), профессор, главный научный сотрудник, 
Научно-исследовательский центр инженерных систем растений, Корейский научно-исследовательский институт 
бионауки и биотехнологии (KRIBB), (Дэчон, Корея), H = 34

БЕРСИМБАЕВ Рахметкажи Искендирович, доктор биологических наук, профессор, академик НАН РК, 
Евразийский национальный университет им. Л.Н. Гумилева (Нур-Султан, Казахстан),  Н = 12

  АБИЕВ Руфат,  доктор технических наук (биохимия), профессор, заведующий кафедрой «Оптимизация 
химической и биотехнологической аппаратуры», Санкт-Петербургский государственный технологический инсти
тут (Санкт-Петербург, Россия), H = 14 

ЛОКШИН  Вячеслав Нотанович, доктор медицинских наук, профессор, академик НАН РК, директор 
Международного клинического центра репродуктологии «PERSONA» (Алматы, Казахстан),  H = 8

СЕМЕНОВ Владимир Григорьевич, доктор биологических наук, профессор, заслуженный деятель науки 
Чувашской Республики, заведующий кафедрой морфологии, акушерства и терапии, Федеральное государственное 
бюджетное образовательное учреждение высшего образования «Чувашский государственный аграрный 
университет» (Чебоксары, Чувашская Республика, Россия),  H = 23

 ФАРУК Асана Дар, профессор Колледжа восточной медицины Хамдарда аль-Маджида, факультет вос
точной медицины Университета Хамдарда (Карачи, Пакистан), H = 21  

ЩЕПЕТКИН Игорь Александрович, доктор медицинских наук, профессор Университета штата Монтана 
(США),  H = 27

КАЛАНДРА Пьетро, доктор философии (Ph.D, физика), профессор Института по изучению нанострукту
рированных материалов (Рим, Италия), H = 26

МАЛЬМ Анна, доктор фармацевтических наук, профессор, декан фармацевтического факультета Люблин
ского медицинского университета (Люблин, Польша), H = 22

БАЙМУКАНОВ Дастанбек Асылбекович, доктор сельскохозяйственных наук, член-корреспондент 
НАН РК, главный научный сотрудник Департамента животноводства и ветеринарной медицины ТОО «Научно-
производственный центр животноводства и ветеринарии» (Нур-Султан, Казахстан), Н=1

ТИГИНЯНУ Ион Михайлович, доктор физико-математических наук, академик, президент Академии наук 
Молдовы, Технический университет Молдовы (Кишинев, Молдова), Н = 42

КАЛИМОЛДАЕВ Максат Нурадилович, доктор физико-математических наук, профессор, академик НАН 
РК (Алматы, Казахстан), Н = 7

БОШКАЕВ Куантай Авгазыевич, доктор Ph.D, преподаватель, доцент кафедры теоретической и ядерной 
физики, Казахский национальный университет им. аль-Фараби (Алматы, Казахстан), Н = 10

QUEVEDO Hemando, профессор, Национальный автономный университет Мексики (UNAM), Институт 
ядерных наук (Мехико, Мексика), Н = 28

ЖУСУПОВ Марат Абжанович, доктор физико-математических наук, профессор кафедры теоретической и 
ядерной физики, Казахский национальный университет им. аль-Фараби (Алматы, Казахстан), Н = 7

КОВАЛЕВ Александр Михайлович, доктор физико-математических наук, академик НАН Украины,  
Институт прикладной математики и механики (Донецк, Украина), Н = 5

ТАКИБАЕВ Нургали Жабагаевич, доктор физико-математических наук, профессор, академик НАН РК, 
Казахский национальный университет им. аль-Фараби (Алматы, Казахстан), Н = 5

ХАРИН Станислав Николаевич, доктор физико-математических наук, профессор, академик НАН РК, 
Казахстанско-Британский технический университет (Алматы, Казахстан), Н = 10

ДАВЛЕТОВ Аскар Ербуланович, доктор физико-математических наук, профессор, академик НАН РК, 
Казахский национальный университет им. аль-Фараби (Алматы, Казахстан), Н = 12



REPORTS     2024  1
OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

 

Reports of the National Academy of Sciences of the Republic of Kazakhstan.  
ISSN 2518-1483 (Online),  ISSN 2224-5227 (Print)
Owner: RPA «National Academy of Sciences of the Republic of Kazakhstan» (Almaty). The certificate of registration 
of a periodical printed publication in the Committee of information of the Ministry of Information and Social 
Development of the Republic of Kazakhstan No. KZ93VPY00025418, issued 29.07.2020. 
Thematic scope:  biotechnology in the field of crop research, ecology and medicine and  physical sciences.
Periodicity: 4 times a year.  Circulation: 300 copies.
Editorial address: 28, Shevchenko str., of. 219, Almaty, 050010, tel. 272-13-19
http://reports-science.kz/index.php/en/archive 

 © National Academy of Sciences of the Republic of Kazakhstan, 2024 

E D I T O R   I N   C H I E F:
BENBERIN Valery Vasilievich, Doctor of Medicine, Professor, Academician of NAS RK, Director of the 

Medical Center of the Presidential Property Management Department of the Republic of Kazakhstan (Almaty, 
Kazakhstan), H = 11

E D I T O R I A L    B O A R D:
RAMAZANOV Tlekkabul Sabitovich, (Deputy Editor-in-Chief),  Doctor in Physics and Mathematics, 

Professor, Academician of NAS RK (Almaty, Kazakhstan), Н = 26
RAMANKULOV Erlan Mirkhaidarovich, (Deputy Editor-in-Chief),  Professor, Corresponding Member of 

NAS RK, Ph.D in the field of biochemistry and molecular genetics, General Director of the National Center for 
Biotechnology (Nur-Sultan, Kazakhstan), H = 23

SANG-SOO Kwak, PhD in Biochemistry, Agrochemistry, Professor, Chief Researcher, Plant Engineering Systems 
Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), (Daecheon, Korea), H = 34

BERSIMBAEV Rakhmetkazhi Iskendirovich, Doctor of Biological Sciences, Professor, Academician of 
NAS RK, L.N. Gumilyov Eurasian National University (Nur-Sultan, Kazakhstan), H = 12

ABIYEV Rufat, Doctor of Technical Sciences (Biochemistry), Professor, Head of the Department of Optimization 
of Chemical and Biotechnological Equipment, St. Petersburg State Technological Institute (St. Petersburg, Russia), H = 14

LOKSHIN Vyacheslav Notanovich, Professor, Academician of NAS RK, Director of the PERSONA 
International Clinical Center for Reproductology (Almaty, Kazakhstan), H = 8

SEMENOV Vladimir Grigorievich, Doctor of Biological Sciences, Professor, Honored Scientist of the 
Chuvash Republic, Head of the Department of Morphology, Obstetrics and Therapy, Chuvash State Agrarian 
University (Cheboksary, Chuvash Republic, Russia), H = 23

PHARUK Asana Dar, professor at Hamdard al-Majid College of Oriental Medicine. Faculty of Oriental 
Medicine, Hamdard University (Karachi, Pakistan), H = 21  

TSHEPETKIN Igor Aleksandrovich, Doctor of Medical Sciences, Professor at the University of Montana 
(Montana, USA), H = 27

CALANDRA Pietro, PhD in Physics, Professor at the Institute of Nanostructured Materials (Monterotondo 
Station Rome, Italy), H = 26

MALM Anna, Doctor of Pharmacy, Professor, Dean of the Faculty of Pharmacy, Lublin Medical University 
(Lublin, Poland), H = 22

BAIMUKANOV Dastanbek Asylbekovich, Doctor of Agricultural Sciences, Corresponding Member of the 
NAS RK, Chief Researcher of the department of animal husbandry and veterinary medicine, Research and Production 
Center for Livestock and Veterinary Medicine Limited Liability Company (Nur-Sultan, Kazakhstan), Н=1

ТIGHINEANU Ion Mikhailovich, Doctor in Physics and Mathematics, Academician, Full Member of the 
Academy of Sciences of Moldova, President of the AS of Moldova, Technical University of Moldova (Chisinau, 
Moldova), Н = 42

KALIMOLDAYEV Maksat Nuradilovich, doctor in Physics and Mathematics, Professor, Academician of 
NAS RK (Almaty, Kazakhstan), Н = 7

BOSHKAYEV Kuantai Avgazievich, PhD, Lecturer, Associate Professor of the Department of Theoretical 
and Nuclear Physics, Al-Farabi Kazakh National University (Almaty, Kazakhstan), Н = 10

QUEVEDO Hemando, Professor, National Autonomous University of Mexico (UNAM), Institute of Nuclear 
Sciences (Mexico City, Mexico), Н = 28

ZHUSSUPOV Marat Abzhanovich, Doctor in Physics and Mathematics, Professor of the Department of 
Theoretical and Nuclear Physics, al-Farabi Kazakh National University (Almaty, Kazakhstan), Н = 7

KOVALEV Alexander Mikhailovich, Doctor in Physics and Mathematics, Academician of NAS of Ukraine, 
Director of the State Institution «Institute of Applied Mathematics and Mechanics» DPR (Donetsk, Ukraine), Н = 5

TAKIBAYEV Nurgali Zhabagaevich, Doctor in Physics and Mathematics, Professor, Academician of NAS 
RK, al-Farabi Kazakh National University (Almaty, Kazakhstan), Н = 5

KHARIN Stanislav Nikolayevich, Doctor in Physics and Mathematics, Professor, Academician of NAS RK, 
Kazakh-British Technical University (Almaty, Kazakhstan), Н = 10

DAVLETOV Askar Erbulanovich, Doctor in Physics and Mathematics, Professor, Academician of NAS 
RK, al-Farabi Kazakh National University (Almaty, Kazakhstan), Н = 12



79

Reports  of the Academy of Sciences of the Republic of Kazakhstan

REPORTS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC
OF KAZAKHSTAN
ISSN 2224-5227
Volume 1. Number 349 (2024), 79–94
https://doi.org/10.32014/2024.2518-1483.258

УДК 532.542, 532.135

© M. Pakhomov1, U. Zhapbasbayev2, G. Ramazanova2*, 2024
1Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russia;

2U.A. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan. 
E-mail: gaukhar.ri@gmail.com

RSM MODEL FOR CALCULATING NON-ISOTHERMAL TURBULENT 
FLOW OF A VISCOPLASTIC FLUID IN A PIPE

M. Pakhomov ― Doctor of Physical and Mathematical Sciences, Professor, Chief Researcher, 
Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Science, 
Novosibirsk, Russia
E-mail: pakhomov@ngs.ru, https://orcid.org/0000-0002-8127-3638;
U. Zhapbasbayev ― Doctor of Technical Sciences, Professor, Chief Researcher, U.A. Joldasbekov 
Institute of Mechanics and Engineering, Almaty, Kazakhstan
Email: uzak.zh@mail.ru, https://orcid.org/0000-0001-5973-5149; 
G. Ramazanova ― Candidate of Physical and Mathematical Sciences, Leading Researcher,                         
U.A. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan
E-mail: gaukhar.ri@gmail.com, https://orcid.org/0000-0002-8689-9293.

Abstract. The paper presents the results of Reynolds-averaged Navier-Stokes 
(RANS) model calculations of non-isothermal turbulent flow of a viscoplastic fluid 
in a pipe. The Reynolds stress model (RSM) was used to simulate turbulence. The 
results of calculations of Newtonian and non-Newtonian fluids were compared 
with the data of direct numerical simulation (DNS) calculations of other authors. 
The calculated data of the RSM showed a significant anisotropy of the axial and 
radial velocity fluctuations (up to several times) and good agreement with the DNS 
data of other authors. Incorporating supplementary runoff and source terms into 
the transfer equations for both averaged and turbulent flow characteristics results 
in a more accurate alignment with the DNS calculations regarding the distribution 
of turbulent non-Newtonian flow properties. The results of calculations of non-
isothermal turbulent flow show the transition of a Newtonian fluid to a viscoplastic 
state. An increase of turbulent kinetic energy in the flow core and attenuation in 
the zone of yield stress manifestation are obtained. The averaged and fluctuation 
profiles express the indicated transformation of non-isothermal turbulent flow.

Keywords: non-isothermal turbulent flow, viscoplastic fluid, RANS, Reynolds 
stress model, non-Newtonian fluid
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Аннотация. Бұл мақалада құбырдағы тұтқыр-пластикалық сұйықтықтың 
изотермиялық емес турбулентті ағынының RANS есептеулерінің нәтижелері 
берілген. Рейнольдс кереуі моделі (RSM) турбуленттілік модельдеу үшін 
пайдаланылды. Ньютондық және Ньютондық емес сұйықтықтарды 
есептеу нәтижелері басқа авторлардың DNS есептеулерінің деректерімен 
салыстырылды. RSM есептелген деректер осьтік және радиалды жылдамдық 
ауытқуларының елеулі анизотропиясын (бірнеше есеге дейін) және басқа 
авторлардың DNS деректерімен жақсы сәйкестігін көрсетті. Орташа және 
турбулентті ағын қасиеттеріне арналған тасымалдау теңдеулеріне ағын 
және бастау бойынша қосымша шарттарды енгізу турбулентті Ньютондық 
емес ағын қасиеттерінің таралуына қатысты DNS есептеулерімен жақсырақ 
келісімге әкеледі. Изотермиялық емес турбулентті ағынды есептеу нәтижелері 
Ньютон сұйықтығының тұтқыр-пластикалық күйге өтуін көрсетеді. Ағынның 
ядросында турбуленттік кинетикалық энергияның жоғарылауы және 
аққыштық кернеуінің байқалу аймағында оның басылуы орын алды. Орташа 
және пульсациялық профильдер изотермиялық емес турбулентті ағынның 
көрсетілген түрленуін білдіреді.
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Аннотация. В статье представлены результаты расчетов RANS неизотер
мического турбулентного течения вязкопластичной жидкости в трубе. 
Для моделирования турбулентности использовалась модель напряжений 
Рейнольдса (RSM). Результаты расчетов ньютоновской и неньютоновской 
жидкостей сравнивались с данными прямого численного моделирования 
(DNS) других авторов. Расчетные данные RSM показали значительную 
анизотропию осевых и радиальных флуктуаций скорости (до нескольких 
раз) и хорошее согласие с данными DNS других авторов. Включение 
дополнительных условий стока и источника в уравнения переноса для 
осредненных и турбулентных характеристик потока приводит к более 
точному согласованию с расчетами DNS в части распределения турбулентных 
неньютоновских свойств потока. Результаты расчетов неизотермического 
турбулентного потока свидетельствуют о переходе ньютоновской жидкости 
в вязкопластическое состояние. Получено увеличение турбулентной 
кинетической энергии в ядре потока и затухание в зоне проявления напряжения 
текучести. Осредненные и пульсационные профили выражают упомянутую 
трансформацию неизотермического турбулентного потока.

Ключевые слова: неизотермическое турбулентное течение, вязкопласти
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чная жидкость, уравнения Навье-Стокса, осреднённые по Рейнольдсу, модель 
напряжений Рейнольдса, неньютоновская жидкость

Introduction
Turbulent non-Newtonian fl uid (NNF) fl ows are encountered in various 

engineering applications, in particular in pipeline transportation of viscoplastic 
(waxy) oil (Zhapbasbayev et al., 2021). Turbulence anisotropy, wall eff ects and 
stratifi cation are characteristic of non-isothermal fl ow of a viscoplastic fl uid and 
present diffi  culties in modeling.

Direct numerical simulation (DNS) and large eddy simulation (LES) are the 
main methods for studying non-Newtonian fl uid (NNF). There are known works 
by LES (Gnambode et al., 2015), DNS (Gavrilov & Rudyak, 2016 a; Rudman & 
Blackburn, 2006; Rudman et al., 2004; Singh et al., 2017 a; Singh et al., 2017 b) 
on the study of turbulent power-law, viscoplastic and pseudoplastic non-Newtonian 
fl uids. The results of average and fl uctuations axial and radial velocities, wall 
friction and turbulent kinetic energy were obtained at Reynolds numbers Re from 
5000 to 20000. Note that LES (Gnambode et al., 2015) and DNS (Gavrilov & 
Rudyak, 2016 a; Rudman & Blackburn, 2006; Rudman et al., 2004; Singh et al., 
2017 a) dealt only with Buckley-Herschel fl uids, and only the recent work (Singh et 
al., 2017 b) presents DNS prediction data for a viscoplastic yield stress fl uid.

The high computational cost of the DNS model for predicting turbulent fl ows 
of viscoplastic fl uids makes the RANS+RSM approach the viable alternative for 
engineering applications. Research into RANS modeling of wall eff ects on turbulence 
has seen signifi cant progress since the seminal work of Durbin, 1991. This paper 
examines the eff ect of wall blocking using the elliptical relaxation method. Durbin 
presented a new rationale for modeling heterogeneity in the “pressure-strain” term. 
In a later paper (Durbin, 1993), Durbin successfully applied the second moment 
full closure procedure to a wide range of canonical fl ows. However, this resulted 
in an inordinately large number of equations, since there was a separate elliptic 
equation for each Reynolds stress. On the other hand, simple turbulence models 
could not adequately capture the anisotropy of turbulence compared to complete 
second moment closure (SMC).

Manceau & Hanjalic, 2002 developed a practical model to solve both wall 
blocking and anisotropic eff ects with a single elliptic relaxation equation for a full 
Reynolds stress model. There is already evidence in the literature of successful 
application of the model in various applications (Thielen et al., 2005, Fadai-Ghotbi 
et al., 2008). These studies mainly concerned fl ows without heat exchange. The 
RSM model was also applied to forced convective heat transfer and generally gave 
good agreement with experimental results (Manceau & Hanjalic, 2000; Behnia et 
al., 1999).

Several papers have dealt with the study of heat transfer in turbulent NNF 
(Masoudian et al., 2016; Masoumi et al., 2019; Yigit et al., 2020). Turbulent fl ow 
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studies with viscoelastic polymer fl ow have been investigated (Masoudian et al., 
2016). In (Masoumi et al., 2019), a numerical study of the natural convection of 
a Schwedoff -Bingham (SB) fl uid between horizontal concentric cylinders was 
carried out. DNS study of the velocity and temperature spectra in Rayleigh–Benard 
convection was carried out in (Yigit et al., 2020). The authors showed that thermal 
convection weakens with increasing Rayleigh number.

In our work we consider axisymmetrical RANS modeling of turbulent non-
isothermal fl ow with yield strength of a viscoplastic SB fl uid. The turbulence of the 
fl uid is modeled using RSM model. The novelty of the study is the transformation 
of the turbulent fl ow of a Newtonian fl uid into a viscoplastic state due to heat 
transfer with the surrounding medium

Mathematical model
Physical Model of a Non-Newtonian Viscoplastic (Schwedoff -Bingham) Fluid
A schematic view of the fl ow confi guration is shown in Figure 1. A non-isothermal 

viscoplastic non-Newtonian fl uid (waxy crude oil) fl ow along an underground pipe 
with an inner diameter (I.D.) D = 2R = 0.2 m, length L = 3 m, and depth to pipe 
axis H = 2 m. The mean-mass velocity of the liquid fl ow at the pipe inlet was Um1 
= 0.2 m/s and its initial temperature T1 = 298 K. The ambient temperature (soil) 
was TSoil = 273–298 K. The pipe material was stainless steel and the pipe wall 
thickness δ = 2 mm. It was assumed that the temperature of the pipe wall from its 
outer side was equal to the soil temperature TW2 = TSoil. The temperature of soil was 
a constant value. The density of fl uid fl ow in the inlet cross-section ρ1 = 835 kg/m3. 
The Reynolds number of the fl ow, determined from the fl ow parameters at the inlet 
(for a Newtonian fl uid) Re = Um1D1/νW1 = 8200. 
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the average turbulent velocity of the flow, but also on fluctuations of the shear rate tensor (Gavrilov & Rudyak, 
2016 b). The instantaneous value of viscosity is represented as a sum of the averaged and fluctuational 
components. The expression for the mean shear rate in the non-Newtonian fluid has the following form and 
consists of two terms. Let us the average value of the molecular viscosity is related to the average value of the 
shear rate such as the same rheological relationship as for the instantaneous quantities (1). Then, the expression 
for the averaged shear rate can be written as (Gavrilov & Rudyak, 2016 b): 
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(Kays, 1994), where it was shown that for the range of variation of the molecular 
Prandtl number Pr = 1–100, the turbulent Prandtl number was 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 

 
Table 1 

The dependence of yield shear stress, and plastic viscosity of non-Newtonian fluid 
 

t, 0С T, K τ0, Pa μP, Pas Bingham number Bm 
0 273 589.6 0.3585 822.32 
5 278 34.62044 0.14634 118.29 
10 283 2.03286 0.05974 17.01 
15 288 0.11937 0.02438 2.45 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 

 

r R= ; 0U V k = = = = ; ( )1w m w
w

T T T
r

  − = −  
; 0i ju u = ;  22 k

y
 = ; 0 =    (18)  

 
The symmetry conditions are set on the pipe axis for all variables: 
 

0r = ; 0U T k V
r r r r

   
= = = = =

   
; 0i ju u

r r r
   

= = =
  

   (19) 

 
In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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t, 0С T, K τ0, Pa μP, Pas Bingham number Bm 
0 273 589.6 0.3585 822.32 
5 278 34.62044 0.14634 118.29 
10 283 2.03286 0.05974 17.01 
15 288 0.11937 0.02438 2.45 

 is the dissipation 
rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002).

The RSM model did not have additional sink and/or source terms taking the 
effect of non-Newtonian fluid on carrier phase turbulence.

Boundary conditions
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall 

surface for the velocity and the condition of heat transfer with the environment 
medium is set for the temperature of the wall (Pakhomov & Zhapbasbayev, 2024):

6 

 

( )

( )

* *
1 1 2 3 3

4 5

1
3

2
3

h
ij ij ik kj kl kl ij kl kl ij

ik jk jk ik lm lm ij ik jk jk ik

PФ g g b g b b b b g g b b kS

g k b S b S b S g k b b

  




   = − + + − + − +   
   

 + − +  +  
 

  (14) 

1 ;
2 3
i j

ij ij

u u
b

k
= −  

1
2

ji
ij

j i

UUS
x x

 
= +    

;  
1
2

ji
ij

j i

UU
x x

 
 = −    

   (15)  

15 ( )
2

w
ij i k j k j k i k k l k l i j ijФ u u n n u u n n u u n n n n

k
  = − + − − 
 

    (16) 

n 



=


;  

1/2

max ,T T
kT C 
 

  =      
; 

3/2 3/4

1/4max ,T L
kL C C


 

 
=  

 
  (17)  

 
Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 

 
Table 1 

The dependence of yield shear stress, and plastic viscosity of non-Newtonian fluid 
 

t, 0С T, K τ0, Pa μP, Pas Bingham number Bm 
0 273 589.6 0.3585 822.32 
5 278 34.62044 0.14634 118.29 
10 283 2.03286 0.05974 17.01 
15 288 0.11937 0.02438 2.45 

  (18) 

The symmetry conditions are set on the pipe axis for all variables:
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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The symmetry conditions are set on the pipe axis for all variables: 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 

 
Table 1 

The dependence of yield shear stress, and plastic viscosity of non-Newtonian fluid 
 

t, 0С T, K τ0, Pa μP, Pas Bingham number Bm 
0 273 589.6 0.3585 822.32 
5 278 34.62044 0.14634 118.29 
10 283 2.03286 0.05974 17.01 
15 288 0.11937 0.02438 2.45 

(19)

In the inlet section (x = 0), the distributions of all variables over the pipe section 
were set, corresponding to the developed turbulent flow in the pipe. At the outlet 
edge (x=L) soft boundary conditions were given for all variables.
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Thus, the system of equation (1)―(17) with the corresponding input and 
boundary conditions (18), (19) is a closed system of equations that describes the 
process of turbulent heat transfer in a waxy oil flow and allows the predictions of 
all the required quantities.

Thermal effects in rheological properties are taken into account by the 
dependence of viscosity 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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The dependence of yield shear stress, and plastic viscosity of non-Newtonian fluid 
 

t, 0С T, K τ0, Pa μP, Pas Bingham number Bm 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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The symmetry conditions are set on the pipe axis for all variables: 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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The dependence of yield shear stress, and plastic viscosity of non-Newtonian fluid 
 

t, 0С T, K τ0, Pa μP, Pas Bingham number Bm 
0 273 589.6 0.3585 822.32 
5 278 34.62044 0.14634 118.29 
10 283 2.03286 0.05974 17.01 
15 288 0.11937 0.02438 2.45 

 on temperature (Pakhomov 
& Zhapbasbayev, 2021). These dependencies are based on experimental data. In 
the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 

Bingham number 
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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The symmetry conditions are set on the pipe axis for all variables: 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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Numerical realization
The numerical solution is obtained using a control volume method on a 

staggered grid. All numerical predictions are performed using the “in-house” code. 
The system of equations (3–5) is solved numerically using the QUICK scheme and 
the SIMPLEC algorithm. The simulations use a non-uniform mesh (streamwise 
and transverse directions) with refinement close to all walls. The cell closest to 
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Calculation results and discussion 
Averaged and turbulent characteristics of the Schwedoff- Bingham fluid 
The axial averaged velocity profile along the tube cross section is qualitatively similar to the one for a 

Newtonian fluid. This is characteristic both for the DNS data (Singh et al., 2017 a) and for our RANS 
calculations. For the axial averaged velocity distributions, it is possible to note an excess by RANS calculations 
(up to 10 %) in comparison to DNS data (Singh et al., 2017 a). The TKE distributions calculated by the author's 
model also agree satisfactorily with the DNS calculation both in the viscous sublayer and in the logarithmic 
region and the difference does not exceed 15 %. These data are given in (Pakhomov & Zhapbasbayev, 2021) 
and are not presented here in order to reduce the manuscript volume. However, the isotropic k‒  – model 
(Hwang & Lin, 1998) does not even qualitatively describe the complex distribution of velocity fluctuations 
over the pipe cross section and significant anisotropy of axial and radial velocity fluctuations of SB fluid. This 
is especially noticeable in the profiles of the radial velocity fluctuation component. 

For the Schwedoff-Bingham-fluid the results of the RSM model calculations of the axial ' '
*/u u u+ =  

(a) and radial ' '
*/v v u+ =  (b) velocity fluctuation profiles are shown in Figure 3. 

Here points are DNS (Singh et al., 2017 b), lines are RANS calculation of authors using RSM model 
(Manceau & Hanjalic, 2002). As can be seen from the data shown in Fig. 3, the RSM model qualitatively well 
describes the anisotropy of the axial and radial velocity fluctuation profiles. The positions of maximum values 
and practically coincide with DNS data (Singh et al., 2017 b). The obtained calculation data confirm the 
possibility of successful use of the RSM model (Manceau & Hanjalic, 2002) to describe the non-isothermal 
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a Newtonian fluid in the inlet pipe, τW is the wall shear stress and νW is kinematic 
viscosity of a fluid at wall condition. The residual error for the continuity equation, 
momentum equations, and RSM model is 10-5 and for the energy equation the error 
is 10-7.

The grid convergence test (GCT) for the radial profiles of turbulent kinetic 
energy (TKE) is performed on the grids: 500x40 (“coarse”), 1000x80 (“basic”) and 
1500 x 120 (“fine”) (see Fig. 2).

The Reynolds and Prandtl numbers of the flow are Re = U1D/νW1 = 0.82×104 and 
Pr = µW1CP1/λ1= 42. The difference between “basic” and “fine” grids is very small 
(up to 0.1%) and the grid with 1000 x 80 CVs is used in authors’ simulations as the 
basic grid.
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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The symmetry conditions are set on the pipe axis for all variables: 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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 (b) velocity fluctuation profiles are 
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Here points are DNS (Singh et al., 2017 b), lines are RANS calculation of authors 
using RSM model (Manceau & Hanjalic, 2002). As can be seen from the data 
shown in Fig. 3, the RSM model qualitatively well describes the anisotropy of the 
axial and radial velocity fluctuation profiles. The positions of maximum values and 
practically coincide with DNS data (Singh et al., 2017 b). The obtained calculation 
data confirm the possibility of successful use of the RSM model (Manceau  & 
Hanjalic, 2002) to describe the non-isothermal flow of the SB fluid. Further in our 
calculations of flow and heat transfer at transition of turbulent Newtonian fluid to 
non-Newtonian fluid we will use exactly RSM model (Manceau & Hanjalic, 2002).

The following crucial points can be noted in conclusion to these two subsections 



89

Reports  of the Academy of Sciences of the Republic of Kazakhstan

concerning the validation a numerical model for describing turbulent isothermal 
power-law and Schwedoff-Bingham fluids. The use of the isotropic k‒

6 

 

( )

( )

* *
1 1 2 3 3

4 5

1
3

2
3

h
ij ij ik kj kl kl ij kl kl ij

ik jk jk ik lm lm ij ik jk jk ik

PФ g g b g b b b b g g b b kS

g k b S b S b S g k b b

  




   = − + + − + − +   
   

 + − +  +  
 

  (14) 

1 ;
2 3
i j

ij ij

u u
b

k
= −  

1
2

ji
ij

j i

UUS
x x

 
= +    

;  
1
2

ji
ij

j i

UU
x x

 
 = −    

   (15)  

15 ( )
2

w
ij i k j k j k i k k l k l i j ijФ u u n n u u n n u u n n n n

k
  = − + − − 
 

    (16) 

n 



=


;  

1/2

max ,T T
kT C 
 

  =      
; 

3/2 3/4

1/4max ,T L
kL C C


 

 
=  

 
  (17)  

 
Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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The symmetry conditions are set on the pipe axis for all variables: 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 

 
Table 1 

The dependence of yield shear stress, and plastic viscosity of non-Newtonian fluid 
 

t, 0С T, K τ0, Pa μP, Pas Bingham number Bm 
0 273 589.6 0.3585 822.32 
5 278 34.62044 0.14634 118.29 
10 283 2.03286 0.05974 17.01 
15 288 0.11937 0.02438 2.45 

 model 
(Hwang & Lin, 1998) makes it possible to predict, in the first approximation, the 
distributions of the averaged parameters of the turbulent flow (averaged axial 
velocity and TKE) of non-Newtonian fluids with a reasonable degree of accuracy. 
However, this model is completely unsuitable for calculating the axial and radial 
components of the carrier phase velocity fluctuations (up to 300 %). The use of 
the Reynolds stress model (second-moment closure) (Manceau & Hanjalic, 
2002) in describing turbulence makes it possible to calculate the behavior of the 
turbulent characteristics in axial and radial directions of non-Newtonian fluids with 
satisfactory accuracy (up to 20 %).
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state of Schwedoff-Bingham fluid (paraffinic oil). Newtonian properties of liquid in 
initial sections of pipe gradually change to viscoplastic (non-Newtonian) state due 
to heat transfer between heated liquid in pipe through its wall and cold environment. 
In process of movement along the pipe the value of longitudinal velocity in zone 



90

ISSN 2224-5227 1. 2024

near axis increases (up to 1.7 times in comparison with entrance velocity level), 
and in the wall zone on the contrary decreases and height of section with zero value 
of liquid velocity increases (see Fig. 4a). Height of the section with zero liquid 
velocity in the pipe gradually increases as the oil moves along the pipe and reaches 
y/R ≈ 0.15 at x/D = 20. The core area with maximum liquid velocity gradually 
decreases to y/R ≈ 0.9 at x/D = 20.

There is a significant increase of turbulent kinetic energy in the near-wall area 
of the pipe (more than 1.75 times) and a noticeable decrease in the near-wall area 
(see Fig. 4b). For the axisymmetric flow, TKE is determined by the well-known 
equation: 
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Yield stress profiles τ0/τ0,1 are shown in Figure 4d, where τ0,1 is the yield stress at 
T = 293 K. The radial profiles of average dynamic viscosity coefficient distributions 
μeff/(μT1+μ) along the pipe length are given in Figure 4e. Here μeff is the effective 
averaged viscosity of the turbulent NNF and (μT1+μ1) is the sum of turbulent and 
molecular viscosities of the NF (waxy crude oil) at the inlet. This ratio is clearly 
showing the effect of appearance of non-Newtonian behavior of the fluid movement. 
The decrease in the fluid temperature in the near-wall zone by turbulent Newtonian 
fluid cooling causes significant increase in the value of average dynamic viscosity 
coefficient of the fluid. 

It is known (Zhapbasbayev et al., 2021) that at fluid temperature T ≤ 293 K, non-
Newtonian fluid properties begin to appear and limit shear stress τ0 arises. This leads 
to a sharp increase in mean dynamic viscosity and ultimate shear stress and leads 
to a decrease in the speed of waxy oil and even to a complete stop. It can be noted 
that the temperature, average dynamic viscosity and ultimate shear stress profiles 
evolution along the pipe length show that at temperature T ≥ 293 K paraffinic oil 
has a Newtonian fluid property, whereas in the temperature region T < 293 K the 
properties of viscoplastic (non-Newtonian) Schwedoff-Bingham- fluid appear. 

Earlier in works (Pakhomov & Zhapbasbayev, 2021; Pakhomov et al., 2023; 
Pakhomov & Zhapbasbayev, 2024) it was shown that heat transfer of moving 
liquid flow in pipe or channel and surrounding ground has the main influence on 
manifestation of non-Newtonian properties of SB liquid. The results of numerical 
calculations for the influence of the ambient ground temperature TS on the turbulent 
characteristics of paraffinic oil are shown in Figure 5. For a Newtonian fluid, flow 
and heat transfer calculations were performed for paraffinic oil without taking into 
account the non-Newtonian properties at TS = 298 K. Note that for the Newtonian 
fluid our numerical calculations are in good agreement with the known DNS 
calculations (Singh et al., 2017 a). These data are not shown in these figures.
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The lowering of the ambient ground temperature causes additional generation of turbulence in the 
near-wall zone of the pipe and its significant suppression in the wall part of the pipe (see Fig. 5). This is 
consistent with the data shown in Fig. 4. At the same time there is a shift of position point of turbulent pulsation 
level maximum, Reynolds stress and TKE towards the pipe axis. In Newtonian liquid it is located y/R ≈ 0.1 
for axial fluctuations, Reynolds stress and TKE (see Fig. 5). For a liquid with manifestation of non-Newtonian 
properties and ultimate shear stress (TS = 273 K), the maximum is located at (y/R ≈ 0.23). Also significant 
turbulence anisotropy is visible and the ratio of axial velocity fluctuations to radial fluctuations is (u’/v’)max ≈ 
5.3) (see Fig. 5). 

Heat transfer between of waxy crude oil (paraffinic oil) with the cold environment leads to the decrease 
in the temperature of the carrier fluid. It causes an increase in plastic viscosity, and the appearance of a yield 
stress in the near-wall zone of the pipe. The values of plastic viscosity and yield stress in in the near-wall region 
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The lowering of the ambient ground temperature causes additional generation 
of turbulence in the near-wall zone of the pipe and its significant suppression in 
the wall part of the pipe (see Fig. 5). This is consistent with the data shown in Fig. 
4. At the same time there is a shift of position point of turbulent pulsation level 
maximum, Reynolds stress and TKE towards the pipe axis. In Newtonian liquid it 
is located y/R ≈ 0.1 for axial fluctuations, Reynolds stress and TKE (see Fig. 5). For 
a liquid with manifestation of non-Newtonian properties and ultimate shear stress 
(TS = 273 K), the maximum is located at (y/R ≈ 0.23). Also significant turbulence 
anisotropy is visible and the ratio of axial velocity fluctuations to radial fluctuations 
is (u’/v’)max ≈ 5.3) (see Fig. 5).

Heat transfer between of waxy crude oil (paraffinic oil) with the cold environment 
leads to the decrease in the temperature of the carrier fluid. It causes an increase 
in plastic viscosity, and the appearance of a yield stress in the near-wall zone of 
the pipe. The values of plastic viscosity and yield stress in in the near-wall region 
become larger for the colder carrier fluid. As the temperature decreases, the near-
wall zone of the viscoplastic fluid expands, covering more and more parts of the 



93

Reports  of the Academy of Sciences of the Republic of Kazakhstan

Newtonian fluid. The velocity of the carrier fluid slows down and loses their fluidity 
at high values of the yield stress in the near-wall zone. The decrease in the fluid 
temperature leads to crystallization of the wax, and the release of the heat of the phase 
transition. Figures 4, 5 clearly demonstrate the occurrence of a stagnation zone and 
the viscoplastic state of the fluid, and also illustrate the transition of paraffinic oil 
from the Newtonian state to the viscoplastic non-Newtonian Schwedoff-Bingham- 
state due to heat transfer with the cold environment.

Conclusion
A numerical study of the motion and heat transfer of a turbulent non-isothermal 

Schwedoff -Bingham fluid through a pipe wall with a cold environment has been 
carried out. Dependences of viscosity and ultimate shear stress on temperature 
were determined experimentally. The calculated data show the transition of an 
incompressible Newtonian fluid to a non-Newtonian (viscoplastic) state.

Calculation results for transition of turbulent Newtonian fluid to viscoplastic 
state are in satisfactory agreement with DNS data of other works for Schwedoff-
Bingham fluid. A better agreement with the DNS calculations on the distribution 
of turbulent non-Newtonian flow characteristics is obtained by including additional 
runoff and source terms in the transfer equations for the averaged and turbulent 
flow characteristics. In the logarithmic layer velocity profile for the Schwedoff-
Bingham fluid is qualitatively similar to that for the Newtonian fluid.

One of the significant results is an increase of turbulent kinetic energy in the 
flow core and damping in the zone of yield strength manifestation. The calculated 
data of the turbulent stress model qualitatively describes the anisotropy of the axial 
and radial velocity fluctuations well. The locations of maximum values of axial and 
radial velocity fluctuations are in agreement with the DNS data of other authors.
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Here Pij is the intensity of the energy transfer from the average velocity to the pulsating one; P = 0.5Pkk; 

TT is the turbulent time macroscale; ijD is the viscous diffusion; *
ijФ  is the redistribution term; ij is the 

dissipation;  is the dissipation rate. The constants and functions of the system of equations (8)―(17) are taken 
from (Manceau & Hanjalic, 2002). 

The RSM model did not have additional sink and/or source terms taking the effect of non-Newtonian 
fluid on carrier phase turbulence. 

Boundary conditions 
The flow sketch is shown in the Fig. 1. No-slip conditions are set on the wall surface for the velocity 

and the condition of heat transfer with the environment medium is set for the temperature of the wall 
(Pakhomov & Zhapbasbayev, 2024): 
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The symmetry conditions are set on the pipe axis for all variables: 
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In the inlet section (x = 0), the distributions of all variables over the pipe section were set, 

corresponding to the developed turbulent flow in the pipe. At the outlet edge (x=L) soft boundary conditions 
were given for all variables. 

Thus, the system of equation (1)―(17) with the corresponding input and boundary conditions (18), 
(19) is a closed system of equations that describes the process of turbulent heat transfer in a waxy oil flow and 
allows the predictions of all the required quantities. 

Thermal effects in rheological properties are taken into account by the dependence of viscosity ( )T  
and yield stress 0 ( )T on temperature (Pakhomov & Zhapbasbayev, 2021). These dependencies are based on 
experimental data. In the Table 1 are given the values of the yield shear stress τ0, plastic viscosity μP, and 
Bingham number ( )0 1Bm / P mR U =  vs fluid temperature. 
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The dependence of yield shear stress, and plastic viscosity of non-Newtonian fluid 
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15 288 0.11937 0.02438 2.45 
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РАКИШЕВ БАЯН РАКИШЕВИЧ
(к 90-летию со дня рождения)

Выдающийся ученый-горняк, действительный член Национальной 
академии наук Республики Казахстан, заслуженный деятель РК, доктор 
технических наук, профессор, почетный ректор Казахского национального 
исследовательского технического университета им. К.  И.  Сатпаева Баян 
Ракишевич Ракишев родился 15 марта 1934 года. 

После окончания с отличием Казахского горно-металлургического 
института с 1957 по 1965 годы он работал на Коунрадском руднике 
Балхашского горно-металлургического комбината в должностях начальника 
смены, начальника цеха и карьера. В 1964 году без отрыва от производства 
успешно защитил кандидатскую диссертацию.

Дальнейшая его трудовая деятельность связана с родным вузом. С 1966 по 
1987 годы доцент, профессор, заведующий кафедрой теоретической механики, 
в период с 1988 по 2016 год заведующий кафедрой открытых горных работ, 
с 1980 по 1993 год научный руководитель проблемной лаборатории новых 
физических методов разрушения горных пород и отраслевой лаборатории 
технологии буровзрывных работ КазПТИ им.  В.И.  Ленина. С 2016 года по 
настоящее время он профессор кафедры «Горное дело», почетный ректор 
Казахского национального исследовательского технического университета 
им. К.И. Сатпаева. 

Под руководством Б. Ракишева факультет Автоматики и вычислительной 
техники занимал передовые позиции в научно-исследовательской, учебно-
производственной и общественной деятельности. Факультетский ансамбль 
«Досмукасан» сформировался, состоялся как творческий самодеятельный 
коллектив и стал популярным в странах СНГ. О  творческой деятельности 
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«Досмукасан» и роли декана Баяна Ракишева в его становлении рассказывается 
в кинофильме «Досмукасан», выпущенном Казахфильмом в 2020 году.

В должности ректора он всю свою силу и энергию отдавал расширению связей 
науки с производством, практической подготовке будущих специалистов. Тогда 
в КазПТИ впервые в Казахстане были организованы специализированные 
студенческие отряды для прохождения производственных практик, открылось 
несколько филиалов кафедр на базе предприятий и НИИ. Активно внедрялись 
договоры о научно-техническом содружестве и подготовке специалистов по 
прямым связям с предприятиями. Контингент иностранных студентов из 
37 стран в то время составлял внушительную цифру – более 300 человек. 
Существенно улучшилось состояние материально-технической базы 
института. КазПТИ им. В.И. Ленина был одним из ведущих высших учебных 
заведений СССР. 

Баян Ракишевич создал стройную теорию  разрушения реального  массива 
горных пород действием взрыва ВВ. Разработал  аналитические методы 
определения расположения зарядов ВВ в массиве, гранулометрического 
состава взорванной горной массы, затрат энергии ВВ  на дробление, 
перемещение и графо-аналитические методы определения размещения  
разнородных пород в развале, параметров технологий буровзрывных и 
экскаваторных работ, обеспечивающих наименьшие количественные и 
качественные потери. 

Баяном Ракишевым сформулированы стратегические задачи рационального 
освоения недр и комплексного использования полезных ископаемых, 
обоснованы системы их обеспечения, разработаны горно-геологические, 
геометрические модели сложноструктурных блоков месторождений, 
математические модели минерального сырья на различных этапах его 
переработки, позволяющие управлять уровнем извлечения как основных, 
так и сопутствующих полезных компонентов в концентрат, в металл, что 
чрезвычайно важно в условиях систематического снижения содержания 
профильных металлов в руде и увеличения спроса на редкие металлы в связи 
с развитием высоких технологий. 

Разработанные математические модели стабилизации качества 
многокомпонентной руды для оперативного управления внутрикарьерным 
усреднением и состоянием минерального сырья на каждом из этапов его 
переработки способствуют совершенствованию экономически эффективных 
технологий добычи и переработки полезных ископаемых.

Научными работами, выполненными на высоком теоретическим уровне 
и оригинальными практическими разработками, получившими признание 
горной общественности, академик Б.Р. Ракишев внес большой вклад в горную 
науку и промышленность, создал научную школу в области эффективного 
разрушения массивов пород и разработки полезных ископаемых в режиме их 
рационального использования недр, подготовил 9 докторов, 30 кандидатов 
технических наук, 9 докторов PhD, сотни магистров и инженеров. 
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Академик НАН РК Б.Р. Ракишев является автором около 800 научных и 
учебно-методических работ, в том числе 15 монографий, 6 аналитических 
обзоров, 14 учебников и учебных пособий, 50 авторских свидетельств и 
патентов на изобретения, более 100 статей в изданиях в базе данных Scopus и 
Web of Science.

За заслуги в области научной, педагогической и организационной 
деятельности Б. Р. Ракишев награжден орденами Трудового Красного Знамени 
и «Парасат», шестью медалями СССР и РК, Почетной грамотой Верховного 
Совета Казахской ССР, удостоен почетного звания «Заслуженный деятель 
РК», является лауреатом Республиканской премии им. К.И. Сатпаева. 

Баян Ракишевич и сейчас ведет активную научно-исследовательскую, 
научно-организационную работу, являясь научным руководителем проектов 
Министерства науки и высшего образования РК, председателем диссертационного 
совета по защите докторских диссертаций, руководителем докторантов PhD, 
вице-президентом ОО «Союз ученых Казахстана», почетным президентом 
Горнопромышленного союза Казахстана, членом редколлегий журналов 
Казахстана, России, Украины и Узбекистана. 

Поздравляя Баяна Ракишевича с юбилеем, желаем ему здоровья, 
благополучия и дальнейших творческих успехов.

Министерство высшего образования и науки РК,
Национальная академия наук РК,
Казахский национальный исследовательский  
технический университет им. К.И. Сатпаева,
редакции журналов «Доклады НАН РК» и 
«Вестник НАН РК» 
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