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METHOD FOR ASSESSING THE QUALITY OF MASKING 
NOISE INTERFERENCES

Abstract. Currently, the number of various means of computer technology 
designed for processing, storing, and transmitting information is increasing. One 
of these threats is the presence of technical channels of information leakage arising 
from informative (dangerous) spurious electromagnetic radiation from technical 
means of its processing, storage and transmission. To protect information from 
leakage through the channels of spurious electromagnetic radiation and interference, 
systems of spatial electromagnetic noise are widely used. 

However, the quality of the masking noise interference of these systems is not 
always assessed, both during their development, design, and production, and in 
confirming their compliance with information security requirements. As a rule, they 
are limited to checking the compliance of the operating frequency range, spectral 
density, type of radiated interference, etc. The noise quality entropy factor is used 
as a measure of the quality of the masking noise generated by the noise generator. 
A sufficient number of studies have been devoted to the creation of generators of 
spatial electromagnetic noise.

Thus, the study of the quality characteristics of generators of spatial 
electromagnetic noise is relevant. A technique for estimating the entropy noise 
quality factor using a spectrum analyzer and a digital storage oscilloscope is 
proposed. The procedure for calculating the entropy noise quality factor from the 
statistics of the instantaneous values ​​of the noise signal amplitudes measured by a 
digital oscilloscope is given.

Key words: masking noise signal; noise generator; spectrum analyzer; entropy 
coefficient.
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ШУ КЕДЕЛДЕРІН БҮРКЕУДІҢ САПАСЫН БАҒАЛАУ 
ӘДІСТЕМЕСІ

Аннотация. Қазіргі уақытта ақпаратты өңдеуге, сақтауға және беруге 
арналған компьютерлік техниканың әртүрлі құралдарының саны артып келеді. 
Осы қауіптердің бірі оны өңдеудің, сақтаудың және берудің техникалық 
құралдарынан ақпараттық (қауіпті) жалған электромагниттік сәулеленуден 
туындайтын ақпараттың ағып кетуінің техникалық арналарының болуы болып 
табылады. Бұл ақпаратты жалған электромагниттік сәулелену және кедергі 
арналары арқылы ағып кетуден қорғау үшін кеңістіктік электромагниттік шу 
жүйелері (шу генераторлары) кеңінен қолданылады. 

Алайда, бұл жүйелердің шу кедергілерін бүркемелеу сапасы оларды 
әзірлеу, жобалау және өндіру барысында да, олардың ақпараттық қауіпсіздік 
талаптарына, күнделікті жұмысына сәйкестігін растау кезінде де бағалана 
бермейді. Әдетте, олар жұмыс жиілігі диапазонының, спектрлік тығыздықтың, 
сәулелену кедергілерінің түрін, жұмыс режимдері мен шарттарын, сондай-ақ 
санитарлық нормаларды сақтау қажеттілігін және т.б. сәйкестігін тексерумен 
шектеледі. Шу сапасының энтропия коэффициенті шу генераторы тудыратын 
маска шуының сапасының өлшемі ретінде пайдаланылады. Кеңістіктік 
электромагниттік шудың генераторларын құруға зерттеулердің жеткілікті 
саны арналды. Бірақ казіргі уақытта шудың сапасын бағалау әдістері жоқ, 
олардың негізінде дайын техникалық шешімдер бар.

Осылайша, кеңістіктік электромагниттік шу генераторларының сапалық 
сипаттамаларын зерттеу өзекті болып табылады. Жұмыста спектр анализаторы 
мен сандық сақтау осциллографы арқылы шудың энтропиялық сапа факторын 
бағалау әдістемесі ұсынылған. Сандық осциллографпен өлшенетін шу 
сигналының амплитудаларының жылдам мәндерінің статистикасынан шу 
сапасының энтропиялық коэффициентін есептеу тәртібі келтірілген.

Түйін сөздер: бүркемелейтін шуыл сигналы; шуыл генераторы; спектр 
талдағышы; энтропия коэффициенті.
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МЕТОДИКА ОЦЕНКИ КАЧЕСТВА МАСКИРУЮЩИХ 
ШУМОВЫХ ПОМЕХ

Аннотация. В настоящее время увеличивается количество различных 
средств вычислительной техники, предназначенной для обработки, хранения 
и передачи информации. 

Одной из таких угроз является наличие технических каналов утечки 
информации, возникающей вследствие информативных (опасных) побочных 
электромагнитных излучений технических средств ее обработки, хранения 
и передачи. Для защиты информации от утечек по каналам побочных 
электромагнитных излучений и наводок широко применяются системы 
пространственного электромагнитного зашумления. Однако не всегда 
осуществляется оценка качества маскирующих шумовых помех этих систем 
как в ходе их разработки, проектирования и производства, так и входе 
подтверждения их соответствия требованиям информационной безопасности. 
Как правило, ограничиваются проверкой соответствия диапазона рабочих 
частот, спектральной плотности, виду излучаемой помехи и др. В качестве 
показателя качества маскирующего шума, создаваемого генератором шума, 
используется энтропийный коэффициент качества шума.

Вопросам создания генераторов пространственного электромагнитного 
зашумления посвящено достаточное количество исследований. Но в 
настоящее время отсутствуют методы оценки качества шума, на основе 
которых имеются готовые технические решения. Таким образом, исследование 
характеристик качества генераторов пространственного электромагнитного 
зашумления является актуальным. В работе предложена методика оценки 
энтропийного коэффициента качества шума с использованием анализатора 
спектра и цифрового запоминающего осциллографа. Приведен порядок 
расчета энтропийный коэффициент качества шума по статистике мгновенных 
значений амплитуд шумового сигнала, измеренных цифровым осциллографом.

Ключевые слова: маскирующий шумовой сигнал; генератор шума; 
анализатор спектра; энтропийный коэффициент.

Introduction. Currently, electronics are used in almost all spheres of human 
life, ranging from simple means of communication to ensuring the security of the 
state as a whole. However, the use of electronic devices and computer technology 
carries a large number of information security threats. The basis for solving this 
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problem is the protection of information in the field of optics, electronics, radio 
engineering, acoustics and other sciences.

The main and at the same time one of the most dangerous technical channels of 
information leakage at informatization objects is the channel of side electromagnetic 
emissions (SEME). Such an information leakage channel is called electromagnetic 
(Khorev A.A. 2012:20, Vasiliev I.V. et.al, 2010:6, A.P. Zaitsev et al., 2017:442, 
Buzov G.A. 2017:586, ST RK GOST R 51275-2006, ST RK 1700-2007). Protection 
of electronic means of information processing and transmission (EM) from leakage 
through SERP channels is achieved by using passive and active protection methods. 
Passive protection methods include shielding, grounding, decoupling and filtering, 
and active methods include the use of systems of spatial electromagnetic noise and 
imitating (masking) interference (Zaitsev et al. 2017:442, ND TZI 3.3-001-07, ST 
RK 1698-2007).

The use of passive methods of protecting EM is the most preferable, since using 
them there are no problems associated with electromagnetic compatibility and the 
presence of unmasking signs of the operation of protective means. However, the use 
of passive methods for protecting EM is not always possible due to the complexity 
of their implementation, high cost, the need for additional development work, 
etc. In such cases, active protection methods are used, which lead to a decrease in 
the signal-to-noise ratio at the input of the receiving device of the reconnaissance 
means and, consequently, to a decrease in the controlled zone for the EM (Khorev 
A.A. 2012:20).

Currently, there are energy and non-energy methods of active protection. The 
non-energy (statistical) method of active masking consists in the emission of a 
special masking signal (interference) with a spectrum similar to the spectrum 
of informative SEME EM. The spectral density of masking interference should 
be higher than the spectral density of SEME, and its level should not exceed the 
levels of SEME (Zaitsev et al., 2017:442, ST RK 1698-2007). The difficulty in 
implementing a non-energy protection method lies in the need to use pulses of 
random amplitude, similar in shape and time-correlated radiation with informative 
SEME pulses. In this case, it is required to accurately determine all informative 
SEME for each EM sample and create an individual for this sample (or identical 
EM) masking noise simulator. As a rule, simulators or jammers are used to protect 
personal computers.

The essence of the energy method lies in the formation and emission into the 
surrounding space in the immediate vicinity of the operating EM of a masking 
broadband noise signal (“white noise”) in the entire frequency range of informative 
SEME with a spectral level exceeding the levels of these SEME. Electromagnetic 
noise (electromagnetic interference, radio noise, radio interference, active masking 
interference) is understood as a time-varying electromagnetic phenomenon that 
does not contain information and can be superimposed on or combined with a 
useful signal. In the context of this work, they are intended to degrade or distort 
the normal operation of enemy electronic equipment. Active masking interference 
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creates a background at the input of the enemy receiver, which makes it difficult to 
detect informative SEME, their recognition and determination of parameters (ISO/
IEC 19762-4-2011 2012:27, GOST R 55055-2012 2014:11). Therefore the use 
of generators of spatial electromagnetic noise (NG) should prevent or lead to the 
impossibility of intercepting informative SEME for their subsequent analysis and 
restoration of the original information or a significant complication of this process.

In the present work, the solution of the following problems is provided:
- determination of the main characteristics of the NG;
- conducting a review of existing methods for assessing the quality of masking

noise interference and identifying their disadvantages;
- development of its own method for assessing the quality of masking noise

interference;
- description of methods for measuring masking noise interference;
- determination of the quality of masking noise interference of some NG;
- search for the correlation of noise signals and the use of statistical methods

(tests) for randomness as alternative methods for estimating the quality of masking 
noise interference.

Research Material and methods. Currently, there is a large number of NG with 
different technical characteristics and types of execution on the market (Zaitsev et 
al. 2017:442, Buzov G.A. 2017:586). Noise generators are available as a separate 
device or as a PCI board for a personal computer. NGs usually consist of a wideband 
signal generator and one or more antennas.

One of the most important requirements for the NG is the broadbandness of the 
noise signal spectrum and high uniformity of the noise power spectral density. For 
this reason, three schemes for generating a broadband noise signal are mainly used 
in noise generators (Khorev A.A. 2012:20):

1) classical method of forming direct noise interference. In this case, it is
possible to use several noise sources operating in different frequency ranges. Noise 
resistors, diodes, transistors, zener diodes and other elements that form noise close 
in its characteristics to "white noise" can be used as primary sources of noise in 
such NGs.;

2) the use of a digital noise generator, the "digital" noise of which is a temporary
random process, close in its properties to the process of physical noise and called 
the "pseudo-random process". Such generators form chaotic (pseudo-random) 
sequences of binary symbols and convert them into sequences of rectangular pulses 
of pseudo-random duration with pseudo-random intervals between them. Noise 
sources in such NGs can be microstrip elements, various integrated circuits, digital 
signal processors, programmable logic integrated circuits, and other elements 
(Zhanabayev Z.Zh. et al., 2010-7, Kogai G.D. et al., 2014-3, Gubanov D. et al., 
1999:5, Dmitriev A.S. et al., 2009:16);

3) the use of a stochastic or chaotic method for generating a noise signal
(Zhanabayev Z.Zh. et al., 2010-7, Ekhande1 R. et al., 2014:4). The signal from 
the harmonic signal generator is fed to a power amplifier operating in a nonlinear 
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mode and loaded onto a non-autonomous nonlinear dynamic system in the form of 
a parallel nonlinear oscillatory circuit, in which the amplified signal is converted 
into noise stochastic interference.

However, noisy informative SEME can be filtered, and in case of poor quality 
masking, the enemy can gain access to the protected information (Gavrilov, I.V. et 
al., 2015:11).

In NG, to generate a broadband noise signal, there can be used a scheme for 
dividing the entire frequency range into subbands using a frequency multiplier 
(Khorev A.A. 2012:20). In such cases, the generated noise in different subbands 
will be correlated, i.e. have the same parameters except for the frequency.

This will make it possible to subtract noise in different ranges, in which 
informative SERP have a large amplitude (power) and further restore the protected 
information. It should be noted that the presence of additional factors in the form 
of the repetition of an informative signal, the level of its amplitude (power), etc. is 
also important (Batyrgaliyev A.B. 2019:3).

In addition, in the absence of complete randomness of the generated noise, there 
are used statistical methods of analysis, through which it is possible to identify the 
patterns of noise formation, including their periodicity. In this regard, an important 
problem arises related to assessing the quality of the noise signal generated by the 
NG.

In order to determine the estimated characteristics of the masking noise, 
information (non-energy or statistical) and energy methods are used. Information 
methods consider the statistical parameters of noise signals in the time domain and 
allow to directly determine the numerical noise quality factor. Based on the calculation 
of the mathematical expectation, dispersion and entropy of the instantaneous values ​​
of time readings and their envelope, the degree of approximation to some reference 
distributions is calculated. They are aimed at finding the degree of uncertainty of 
the instantaneous values ​​of noise signals, expressed, for example, in terms of the 
entropy quality factor of the masking noise. When using this method of active 
masking, the NG emits a special masking signal (interference) with a spectrum 
similar to that of informative SERP. In this case, the spectral density of masking 
interference should be higher than the spectral density of SERP, and its level should 
not exceed the levels of SEME.

The energy method for information protection uses the postulate about the need 
to exceed the energy of noise over SEME in the entire frequency range. Therefore, 
in order to check the noise quality, integral indicators are used that take into account 
the excess of the noise level over the level of the informative signal (ST RK 1698-
2007 Protection of information, Gavrilov, I.V. et al., 2015:11).

Result and discussion. One of the effective ways to protect computer equipment 
(CE) from information leakage through the channel of side electromagnetic 
emissions (SEME) is spatial electromagnetic noise (Khorev A.A. 2012:20). 

For clarity, the application of the method for assessing the quality of the masking 
noises of the NG on Fig. 1 shows the histograms of the noise signal amplitudes 
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distribution. For the upper histogram, the entropy quality factor is 0.9, and for the 
lower one it is 0.7. The x-axis corresponds to the number of intervals, and the y-axis 
corresponds to the number of sample elements in the interval. The low entropy 
quality factor of the masking noise interference of the NG will not be able to ensure 
the security of the protected information.

A low entropy quality factor can, for example, be observed when the quality 
of the noise source is insufficient (noise diode, transistor, resistor, etc.) or in other 
cases. Such cases include the ability to control the level of the output signal of 
the NG, as well as the power supply of the NG with some boundary levels. For 
example, some manufacturers allow NG power supply within 220 V ± 10% at a 
power supply frequency of 50 Hz. This means that the power supply of the GS is 
possible within the range of 187-253 V. In some NGs, when they were powered at 
the boundary values, a significant deterioration in the entropy quality factor was 
observed. This circumstance directly increases the threat of leakage of information 
protected by the NG.

Entropy noise quality factor is used as an indicator of the quality of the masking 
noise Кш created by the NG, which characterizes the approximation of the noise 
power distribution law to the ideal “white” noise with a normal power distribution 
law.

In addition, in the absence of complete randomness of the generated noise, there are used statistical
methods of analysis, through which it is possible to identify the patterns of noise formation, including their
periodicity. In this regard, an important problem arises related to assessing the quality of the noise signal
generated by the NG.

In order to determine the estimated characteristics of the masking noise, information (non-energy or
statistical) and energy methods are used. Information methods consider the statistical parameters of noise
signals in the time domain and allow to directly determine the numerical noise quality factor. Based on the
calculation of the mathematical expectation, dispersion and entropy of the instantaneous values of time
readings and their envelope, the degree of approximation to some reference distributions is calculated. They
are aimed at finding the degree of uncertainty of the instantaneous values of noise signals, expressed, for
example, in terms of the entropy quality factor of the masking noise. When using this method of active
masking, the NG emits a special masking signal (interference) with a spectrum similar to that of informative 
SERP. In this case, the spectral density of masking interference should be higher than the spectral density of
SERP, and its level should not exceed the levels of SEME.

The energy method for information protection uses the postulate about the need to exceed the energy of
noise over SEME in the entire frequency range. Therefore, in order to check the noise quality, integral
indicators are used that take into account the excess of the noise level over the level of the informative signal
(ST RK 1698-2007 Protection of information, Gavrilov, I.V. et al., 2015:11).

Result and discussion. One of the effective ways to protect computer equipment (CE) from information 
leakage through the channel of side electromagnetic emissions (SEME) is spatial electromagnetic noise
(Khorev A.A. 2012:20). 

For clarity, the application of the method for assessing the quality of the masking noises of the NG on
Fig. 1 shows the histograms of the noise signal amplitudes distribution. For the upper histogram, the entropy
quality factor is 0.9, and for the lower one it is 0.7. The x-axis corresponds to the number of intervals, and the
y-axis corresponds to the number of sample elements in the interval. The low entropy quality factor of the
masking noise interference of the NG will not be able to ensure the security of the protected information.

A low entropy quality factor can, for example, be observed when the quality of the noise source is 
insufficient (noise diode, transistor, resistor, etc.) or in other cases. Such cases include the ability to control
the level of the output signal of the NG, as well as the power supply of the NG with some boundary levels. For
example, some manufacturers allow NG power supply within 220 V ± 10% at a power supply frequency of 50
Hz. This means that the power supply of the GS is possible within the range of 187-253 V. In some NGs, when
they were powered at the boundary values, a significant deterioration in the entropy quality factor was
observed. This circumstance directly increases the threat of leakage of information protected by the NG.

Entropy noise quality factor is used as an indicator of the quality of the masking noise Кш created by the 
NG, which characterizes the approximation of the noise power distribution law to the ideal “white” noise with 
a normal power distribution law.

Figure 1.  Histograms of noise signal amplitudes distribution: a) − Кш = 0,9; b) − Кш = 0,7 

A technique for estimating ENQF using a spectrum analyzer and a digital storage oscilloscope is
proposed.

The measuring installation for measuring and calculating the ENQF is shown in Figure 2.

Figure 1. Histograms of noise signal amplitudes distribution: a) − Кш = 0,9; b) − Кш = 0,7

A technique for estimating ENQF using a spectrum analyzer and a digital storage 
oscilloscope is proposed.

The measuring installation for measuring and calculating the ENQF is shown 
in Figure 2.

Figure 2. Measuring installation for measuring and calculating the ENQF

The measuring antenna is installed at a distance of 1 m from the noise generator antenna and connected 
to the antenna input of the spectrum analyzer. The maximum bandwidth (F) of the spectrum analyzer is set. 
From the output of the intermediate frequency of the spectrum analyzer, the signal is fed to the input of a
digital storage oscilloscope. The instantaneous values of the amplitude of the noise signal from the oscilloscope
are transferred to the PC for processing.

The essence of the proposed methodology for assessing ENQF is following:
1) By analyzing the spectrum of the noise signal generated by the NG, the frequency intervals of the 

spectrum are selected, in which the greatest unevenness of the frequency response of the noise is observed. If
the noise generator uses several channels for generating noise interference, then at least one such interval must
be selected in each of them.

2) The spectrum analyzer is tuned sequentially to the center frequency of each of the frequency intervals.
The electromagnetic noise signals received by the spectrum analyzer are converted into electrical signals and 
transmitted via an intermediate frequency to an oscilloscope that acts as an analog-to-digital converter.

3) Instantaneous values of the amplitude of the noise signal in *.csv format from the oscilloscope are sent
to the signal processing system (personal computer with the calculation program) for further processing and
calculation of the ENQF.

Below is the procedure for calculating the ENQF according to the statistics of the instantaneous values
of the amplitudes of the noise signal generated by the NG:

1. The statistics of instantaneous values of noise signal amplitudes (n) with a volume of at least 106

elements is collected.
2. According to collected statisticsX = {x1, x2, … xn} a statistical series{x(1) ≤ x(2) ≤ ⋯ ≤ x(k) ≤ ⋯ ≤

x(n)} is being constructed and calculated: average value (X̅), dispersion (σ2) and standard deviation (σ)
according to the formulas:

X̅ = 1
n ∑ xi

n

i=1
. (1)

σ2 = 1
n − 1 ∑(xi − X̅)2.

n

i=1
(2)

σ = √ 1
n − 1 ∑(xi − X̅)2

n

i=1
. (3)

3. The values of the statistical series x(k) are grouped by selected non-overlapping intervals (x(j-1); xj), j 
=1, 2, …, m, where m is the number of obtained intervals, and xj are the upper boundaries of the intervals.
When choosing the interval width, it is recommended to use the rule:

Figure 2. Measuring installation for measuring and calculating the ENQF
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The measuring antenna is installed at a distance of 1 m from the noise generator 
antenna and connected to the antenna input of the spectrum analyzer. The maximum 
bandwidth 
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3. The values of the statistical series x(k) are grouped by selected non-overlapping
intervals (x(j-1); xj), j =1, 2, …, m, where m is the number of  obtained intervals, 
and xj are the upper boundaries of the intervals. When choosing the interval width, 
it is recommended to use the rule:

 ∆ ≤ (x(n)−x(1))
2r  , (4)

where  – maximum spacing width;
x(1) и x(n) –minimum and maximum elements of the statistical series, respectively;
r – bit depth of the used analog-to-digital converter of the measuring instrument.

The interval width j is equal to:

∆j= xj − xj−1, (5)

where j =1, 2, …, m.

It is recommended that all intervals be chosen equal in width.
4. After choosing the intervals j for the sample X={x1, x2,…, xn}, the number nj

∗ of the sample values
x(i) that fall into the corresponding intervals is calculated. Based on the obtained values of nj

∗, the
corresponding relative frequencies pj

∗ and relative densities of sample values in each interval σj
∗ are calculated:

pj
∗ =

nj
∗

n . (6)

σj
∗ =

pj
∗

hj
. (7)

The sum of the relative frequencies (pj
∗) must be equal to one, i.e: 

∑ pj
∗ = 1. (8)

m

j=1

5. For cases when in any of the intervals nj
∗ turns out to be equal to 0, you should combine this interval

with the interval (j-1) or (j+1), recalculating the relative frequencies and relative densities in the newly formed
intervals, or change  so, so that with a new partition, each of the intervals includes at least one sample value
(xj).

6. Based on the obtained data, Table 1 is compiled, which indicates the number of the interval (digit) j,
the boundaries of the discharge xj-1 − xj, the number of discharge nj

∗, the relative frequencies pj
∗ and the relative 

densities σj
∗ of sample values.

Based on this table, a histogram of the distribution of instantaneous voltage values of the noise signal is
constructed.

7. For each digit of the histogram, the entropy (Hj) is calculated according to the formula:
Hj = pj

∗ ∙ ln σj
∗ (9)

Table 1 - Initial data for calculating ENQF
The number of the interval (discharge) j 1 2 … m

Discharge [xj-1;xj] boundaries [x0;x1] [x1;x2] … [xm-1;xm]
Value nj

∗ n1
∗ n2

∗ … nm∗

Relative frequencies pj
∗ p1

∗ p2
∗ … pm∗

Relative densities σj
∗ σ1

∗ σ2
∗ … σm∗

Entropy of the discharge Hj H1 H2 … Hm

Entropy of the noise signal H

8. Next, the entropy of the noise signal (H) is calculated by the formula (10), the entropy power of the 
noise signal (Pэ) by the formula (11) and the entropy quality factor of the instantaneous values of masking
noise voltages (K) by the formula (12):
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x(1) и x(n) –minimum and maximum elements of the statistical series, 
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r – bit depth of the used analog-to-digital converter of the measuring instrument.
The interval width Δj is equal to:
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8. Next, the entropy of the noise signal (H) is calculated by the formula (10), the entropy power of the 
noise signal (Pэ) by the formula (11) and the entropy quality factor of the instantaneous values of masking
noise voltages (K) by the formula (12):
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The number of the interval (discharge) j 1 2 … m
Entropy of the discharge Hj H1 H2 … Hm

Entropy of the noise signal H

8. Next, the entropy of the noise signal (H) is calculated by the formula (10), the
entropy power of the noise signal (РЭ) by the formula (11) and the entropy quality  
factor of the instantaneous values of masking noise voltages (K) by the formula 
(12):

H = − ∑ Hj

m

j=1
. ( 10)

 

Pэ = e2H

2πe. (11)

Kш = Pэ
σ2 . (12)

The calculated value of Kш is compared with the normalized value of Kшп set for the given type of noise
generator.

The proposed method has been tested in measuring the ENQF of noise generators installed at
informatization facilities.

The tests were carried out using a laboratory complex consisting of an AI-5.0 active measuring antenna,
an R&S FSW8 digital spectrum analyzer, an R&S RTO 1022 digital storage oscilloscope, and a laptop-based
signal processing complex.

As an example, Figures 3 and 4 show the masking noise spectra generated by the noise generators LNG-
503, Gnome-3, Salyut 2000 B and Sonata-R2, and Table 1 shows the measured values of the entropy noise 
quality factor of these generators obtained during the research.
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Figure 4. Spectra of masking noises generated by noise generators

"Salyut 2000 B" (4.1) and "Sonata-R2" (4.2)

As can be seen from Table 2, the measured values of the entropy noise quality factors generated by noise
generators basically correspond to their passport values.

Table 2 - Measured values entropy noise quality factor of noise generators
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The calculated value of Kш is compared with the normalized value of Kшп set for the given type of noise
generator.
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The tests were carried out using a laboratory complex consisting of an AI-5.0 active measuring antenna,
an R&S FSW8 digital spectrum analyzer, an R&S RTO 1022 digital storage oscilloscope, and a laptop-based
signal processing complex.

As an example, Figures 3 and 4 show the masking noise spectra generated by the noise generators LNG-
503, Gnome-3, Salyut 2000 B and Sonata-R2, and Table 1 shows the measured values of the entropy noise 
quality factor of these generators obtained during the research.
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"LNG-503" (3.1) and "Gnom-3" (3.2)
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As can be seen from Table 2, the measured values of the entropy noise quality factors generated by noise
generators basically correspond to their passport values.

Table 2 - Measured values entropy noise quality factor of noise generators

             Figure 4.1                                       Figure 4.2
Figure 4. Spectra of masking noises generated by noise generators  "Salyut 2000 B" (4.1) and 

"Sonata-R2" (4.2)

As can be seen from Table 2, the measured values of the entropy noise quality 
factors generated by noise generators basically correspond to their passport values. 

Table 2 - Measured values entropy noise quality factor of noise generators
Noise generator 

type
Spectrum analyzer tuning 

frequency, MHz
Spectrum analyzer 
bandwidth, MHz

Radiation 
power

Measured value 
ENQF

"LNG-503" 500 80 Maximum 0,90
"Gnome-3M" 500 80 Maximum 0,97
"Salyut-2000B" 500 80 Maximum 0,96

"Sonata – R2" 500 80
Maximum 0,88
Maximum 0,98

Thus, the proposed technique makes it possible to measure the entropy noise 
quality factors generated by noise generators of spatial electromagnetic noise 
systems without galvanic connection of measuring instruments to generators and 
provides sufficient measurement accuracy.

Carrying out manual calculations using the proposed alternative method for 
estimating the quality of masking noise interference is a very laborious and lengthy 
process. This is due to the need to process a large number of values (at least 1 
million elements).

In this regard, there has been developed a software to implement the automatic 
calculation of measurement results. The program consists of several functions and 
the calculation itself.

Figure 5 shows an example of the calculation program result.
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Noise generator type Spectrum analyzer tuning
frequency, MHz

Spectrum analyzer
bandwidth, MHz Radiation power Measured value 

ENQF
"LNG-503" 500 80 Maximum 0,90
"Gnome-3M" 500 80 Maximum 0,97
"Salyut-2000B" 500 80 Maximum 0,96

"Sonata – R2" 500 80 Maximum 0,88
Maximum 0,98

Thus, the proposed technique makes it possible to measure the entropy noise quality factors generated by
noise generators of spatial electromagnetic noise systems without galvanic connection of measuring
instruments to generators and provides sufficient measurement accuracy.

Carrying out manual calculations using the proposed alternative method for estimating the quality of
masking noise interference is a very laborious and lengthy process. This is due to the need to process a large
number of values (at least 1 million elements).

In this regard, there has been developed a software to implement the automatic calculation of
measurement results. The program consists of several functions and the calculation itself.

Figure 5 shows an example of the calculation program result.

Figure 5. An example of the calculation program result

Conclusions. Spectrum analyzers (or other measuring receivers), digital storage oscilloscopes, or mixed
signal oscilloscopes are considered appropriate to make the necessary measurements.

In this case, you should pay attention to the parameters of the selected measuring instruments: operating
frequency range and bandwidth.

If you select an oscilloscope with the required bandwidth of 2-3 GHz (operating frequency range of the
NG), then for measurements on the air this will be a practically impossible task. This is because even the best
performing premium spectrum analyzers have less bandwidth. For example, the Keysight UXA (N9040B)
spectrum analyzers have a maximum bandwidth of 1 GHz (real-time 510 MHz) and the R&S®FSW - 800 
MHz (expandable to 5 GHz with an RTO2064 oscilloscope) [19, 20]. However, the cost of such devices is
very high.

In this regard, to carry out measurements on the air using a spectrum analyzer, the operating frequency
range of the NG will need to be divided into equal subbands that fit into the bandwidth of the spectrum
analyzer.
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