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FERMION THEORY OF COLLECTIVE STATES OF NUCLEI,
ITS APPLICATION TO THE STRUCTURE OF REAL SYSTEMS

Abstract. Based on the nucleon-pair shell model, in which the fermionic space is cut by the "realistic" SD-
operators by the generalized senority method, the microscopic structure of the collective states of the nuclei of the
average atomic weight is studied. In this case, the effects of splitting of single-particle levels on the collective-pair
structure of the system are taken into account. To solve such a multiparticle problem, we use the generalized
quasispin method and double tensors, which facilitate the calculation of the matrix elements of pair interactions of
nucleons. The total Hamiltonian is diagonalized exactly in fermionic space without applying the procedure for
mapping fermion operators into bosonic operators. The parameters of the interacting boson model are calculated on
the basis of the permuted fermion approach. The theory is applied to the study of the properties of the collective
states of even isotopes of ruthenium with N = 58-66. The spectrum of low-energy states is also calculated for the
probabilities of E2 transitions in them and they are compared with the available experimental data.

I. Introduction

The low-energy collective states of the nuclei of medium and heavy atomic nuclei are well described
by the interacting boson model (IBM) [1-4]. The parameters of such a phenomenological theory are
usually chosen from comparison with experimental data, and they smoothly change with an increase in the
number of nucleons in the isotopes of systems.

On the other hand, the observed changes in the parameters of the IBM model as a function of N and Z
are in good agreement with the first approximation of the approach that takes into account the severity
schemes in interacting fermion systems [5-7].Attempts were also made to substantiate the IBM by
calculating model parameters from detailed microscopic approaches. The description of collective states in
terms of fermion degrees of freedom is an interesting and important problem in the theory of nuclear
structure.But because of the difficulty of carrying out numerical calculations in a huge shell-model space
for nuclei with a sufficiently large number of particles, we have to use some types of truncating schemes
for the fermion space.In many cases, the so-called SD —pair circumcision of the enormous fermion-shell
space is used, however, difficulties remain regarding the application of “realistic” SD —nucleated pairs as
building blocks in the model [8-11].To overcome such obstacles in the microscopic calculations, the
parameters of the IBMare determined by the method of mapping the collective shell space into the bosonic
one, and then systematic calculations are carried out in the bosonic space. The Ohtsuka-Arima-Yakello
(OAY) map [12,13] based on the generalized seniority scheme was used most of all [14].

In this work, we use the nucleon — pair shell model in which the fermion space is cut off by ” realistic
" SD — pair operators taking into account the effect of splitting of single-particle levels into a collective —
pair structure of the system.Also here, the full Hamiltonian is diagonalized exactly in the fermion space
with generalized senority, without using the mapping procedure, which gives a fermion pattern of
collective excitations of nuclear states. The used approach to the study of collective states goes into the so-
called fermion-dynamic symmetric model (FDSM) [15-24], in the case of neglecting splittings of one-
particle states that affect the collectivity of levels.
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In this work, systematic calculations of the parameters of the model of interacting bosons are carried
out, as applied to the study of the properties of low-energy states of even Ru isotopes with neutron
numbers N = 58-66. Selection of the nuclei due to the fact that, firstly, they generalized quantum number
seniority (quasi- spin generalized) is most purely secondly due to prostate configurations of excited
nuclear states application of this method is simple and clear. In addition to the spectra of nuclei, the
behavior of the wave functions of states is also discussed by calculating the ratios B (E2) and o (E2 / M1)
for lower states. The obtained values are compared with known experimental data.

II.Generalized quasispin space and pair interaction of fermions

The formalism of the generalized quasi-spin (generalized senority) [3, 4] is used, which allows one to
exactly solve a multi-pair fermion problem with a fixed number of particles with given internuclone
forces.It introduces a double tensor in the usual and generalized seniority spaces, by means of which the
eigenfunctions and eigenvalues of numerous pairwise operators are easily found.Generalized quasispin
fermion space we introduce via operators:

i 1 . i N -1
s+=zjajsi,s_=zja—jsz, so=zjsg=( )/2, (2.1)

in which a; — are coefficients reflecting the amplitudes of the probability of population of the orbit j and
they are normalized:

The quasi-spin operators of the shell configuration j™, satisfy the usual commutation relations, which
the angular momentum operators obey:
§] = VAA*(jjo0) = Va2 (jm, jm, | 00)a’, a’, , SI = VAA(jj00),

53 =15 (W = 29) =3 @y () - 00 2

In addition, double tensors are introduced in the spaces of both quasispins with the moment A, as well
as in the usual with tensors of rank k and their corresponding Z-projections s and q.For the case when k is
even, they are written in the form:

TR () = A* (ijka), TR (i) = AGjka),
Tog O Gi) = UGjke) + /9/2 5(k,0). 2.3)

Here they are double tensors; in the usual space of rank k, and simultaneously a tensor of rank 1 in a
quasispin space. Any single-particle operator is proportional to the double tensor of the first rank in a
quasispin space, and in the ordinary one it is proportional to the k-rank tensor T %) (jj).

The reduced matrix element of the single-particle operator of n particles is written through a matrix of
single particles with senority 9.

. . v -1 [(n=942)(20-n—-9+2) . . -
G0l 0y == [P G 0qy |5 £ 00 ~ 2,00 @)

A completely similar method can be used to simplify the calculation of two-particle matrix elements
using similar reduction formulas. Usingthedoubletensors (2.3), thepairinginteraction operator is written:

V=3 V2] +161(1j2j3ja) [AT (ij2) X A(f3]'4)](()0) (2.5)

G = ( j1i2)( 1314)/4 < jij2 IV 1jzja] >,

can also be expressed in terms of double tensor

—— Y4 ——
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2.0)
V=-%,J2]+1G [TjS.l’D x TP (111 = 1140) = TO + 7O + 7@ (2.6)
00
@ _ _1 _ Wn _pan ]
For example, T® = 25,76, |15 =150, = v - )R, 2.7)

Here, for example, for = 0: Fy = —%Z,(Z} + 1)G;.
In additiononlyT ) can change senority 9 by 9’ =9 + 2, 9 + 4, then according to the Wigner-Eckart
theorem the reduction formula follows:

< M|V > = % < j29aJ|T®|j20'a) > (2.8)

where f;(n)=( (22 — 92 (n — )0 (22 — 9")> (n — £2))are the Clebsch-Gordan coefficients.

Matrix elements that are diagonal in senority include the contributions of all three tensors. T (0(1:(2),
which are discussed in detail in the works[4,9].

Operators of generalized quasi-spin(2.1) obey also the usual commutation ratios, however, remain
non-Hermitian:(S_)" # S,.

[S..5_]=25,, [S,,S,]=+2S. (2.9)
All Lie groups (2.1) for all values of ajare isomorphic to each other. Therefore, for any set of
operators (2.1), we can introduce the complete generalized quasispin operator: S = S, S_ + S2—S,,.
The state vectors of the quasi-spin operators S and Spare determined by the quantum numbers s and

Sp, which are associated with the quantum number seniority and the total number of nucleons N in the
form:

S =2(02 —9)andS, = (N — ). (2.10)
Then using commutation relations between S, Sywe have:
S_|s ,S0.4 >= const|s, so—1,q >,
S+|s, So,q >= const|s, So+1,q >, (2.11)
S_|s,s0, = —s,q >=0.

Thus, according to the quantum number of the generalized quasi-spin s, it is possible to classify the
states of the system by the ratio of the rotation of the system in the quasispin space.Therefore, this method
is one of the easiest ways to solve many-particle problems.Many-particle matrix elements are expressed in
terms of two-particle with the help of reduction formulas and commutation relations between tensors.For
example, Hamiltonian pairing interaction

Hg = eN -GS, S_ (2.11)
is diagonal in the representation of a generalized seniority.

Wave functions of system states with quantum numbers

s, JM > , therefore, are expressed in form:

1

) Shrs,—s M > (2.12)

|5, so/M >= {n!(n—ﬁ)!

wheren = (N —9)/2 -the number of paired particles.

Now we consider a many-particle problem in the space of a generalized quasispin with an arbitrary
pair interaction operator. The full Hamiltonian, in this case, is conveniently divided into two parts,
selecting from it the pairing interaction Hs in the generalized quasispin representation: / = H_+W

,where W-operator, expressing the rest of the interaction of particles, but diagonal in the representation of
generalized quasispin s
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JiJ2J3J4
Then the eigenvalue problem for the complete Hamiltonian H, which is diagonal in the s-
representation, reduces to solving the equation:

s,S0>:E(n:s+so,v:Q—2S,qu,soq>0. (2.14)
The total energy of the system is also divided into two parts.
E(n,v,q):E(n:2n+v,v)+E'(n,v,q), (2.15)

where, Es is the eigenvalues of the pairing part of the Hamiltonian Hs.
Let us find the conditions under which the full Hamiltonian H is diagonal in the representation of a
generalized quasispin. For this, it is necessary that functions (2.14) be eigenfunctions of the operator W:

s so,q> E(n 12 q)‘s so,q> (2.16)
This equation can be reduced to several easily solvable, independent of n equations. Forthispurpose,
considerthecommutator:

v.s.]= 22<11]2‘V‘13]4> (ijIM) QJ}C?]353A(;/\/_ ) e T (s )+ ()jﬁj“*Mog;le(j}j“)}

T, jj' =(2 /1+5]‘_]_‘)ZZ jjm—m'|JM)aj*.mc7j,m., 2.17)

mm

where, single-particle operator satisfying the relations:

i (') s |=26 4, (ji'om). (2.18)

This operator breaks a pair of particles in the S +|0> state and puts them into the excited state

A, ( j]"JM ) O> In addition, we introduce the operator of the creation of unpaired particles v with a

common angular momentum J:

0" (v,JM ) 0) = Z;/ “(j,JM ) 0). (2.19)

From the normalization condition of the wave functions, we have: 3" (2 ' =1.
Then equation (2.16) can be rewritten in the form: j
w(S,)' 0" (v,JM)0)=E (n,v,q)0" (v,JM ) 0). (2.20)
Expression (2.19) will be satisfied, if only the equalities hold:
[.5. 10" (v, n)|= a(v,)5.0" (v, Im),
W' (v,JM)0) = E (n,v,q)0" (v, JM)0),

E'(n,v,q)z E'(n,v,q)-i- n/”t(v,J).

As a result, the condition of diagonalization of the complete Hamiltonian H = H_+W in the s-
representation reduces to solving the system of equations

— 46 ——
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HS|0)=£50),

(s ]s]=2ds.f,
HOWJIM0 =HvJ)0 (nJM0), (2.22)
[[H, slo (V,JM] (G- AnJ))S.O(vJM,

where, E, =S (N =2,v=0=2-GQ.).

The hollow energy of the system is determined by equality (2.15). In the case of the invariance of W
with respect to its rotation in the s-representation, the equality ﬂ(v, J ) = Omust be fulfilled.

Thus, the solution of the problem with the full Hamiltonian H leads to the lifting of the degeneracy of
levels by the angular momentum J in multiplets characterized by a quantum number of generalized
senority v whose positions linearly depend on the number of pairs in the system.

I11. Fermion structure of collective states of even ruthenium isotopes

The stated microscopic method for calculating the collective state of nuclei is applied to the study of
low-energy states of even ruthenium isotopes with atomic weights A = 100-106.

The single-particle functions of a symmetric harmonic oscillator are taken as the basis of the
calculations. The potential of the nucleon-nucleon interaction is selected in the form:

V = (U, + Usttg + UrS12)f(r,19) + Ug (3.1)

where,U,,, Us, Ur—parameters ofwigner, singlet and tensor forces,mgand S;,- operators singlet and tensor
projection n.Radial force dependencef (r, ry)selected as Gauss potential,U; -Coulomb potential. The full
potential of the pair interaction of nucleons is equal to:

V = Vo + Vo + Vi

As the core of this nuclei in protons and neutrons states is taken the low energy states of the strontium
nucleus with Z = 38 and N = 50 [10].The proton shell of the strontium nucleus is completed by filling the
2P 3/2 level.

The distance between this overhead and free shell 2P; ;, of order 3 MeV. Then the shell 2P;,can be

consideredsemimagic. As a single-particle proton states can be taken, the lower state **Y: the binding
energy of which is:epl/2 = —7,07 MeV, Eg/2 = —6,16MeV.

As single-particle neutron states, taken thehole states of 1335 in MeV:

&n = 0(d3/2); 0,24(hy11/2), 0,33(51/2), 1:66(d3/2), 2334(97/2)- [11]

With the above experimental data on single-particle states of near magic nuclei Z = 38, N =
S0realizethe corresponding choices of the parameters of paired interactions of valence nucleons.The
parameters of pair interactions of nucleons are determined from the description of experimental spectra of
even Ru isotopes.

The depth of the proton-proton interaction Vpp should vary slowly in nuclear isotopes, but differ from
each other by a small amount. In this paper, they were chosen the same for all isotopes and equal tothe
amplitude of the tensor interaction was considered negligible. The selected parameters of the nn and np
interactions are shown in Table 1.These values turned out to be close to the values obtained in [12], for
heavy nuclei.They vary with the number of neutrons monotonously and slowly. In addition, V,,, > V;,, for
all isotopes.This is due to the fact that the single-particle energies splinter for protons slightly more than
for neutron holes. The table shows that the depth of the neutron-proton interaction is also somewhat
greater for all isotopes and it slowly decreases with a decrease in the number of neutrons.
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U U: Uy U
100p,, 22 -16 30 24
102py, 19 -14 27 22
104py, 17 11 24 -19
106py, -15 -10 22 17
108y, 12 -8 220 -14

They computed the entire low-lying spectrum of even ruthenium isotopes with N = 58, 60, 62, 64, 66.
The obtained energy values of the levels of these nuclei are compared with their experimental data, which
are listed in Table 2.

100p,, 102p,, 104p,, 106p,, 108p,,
SAnpa
Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor.

0f 0 0 0 0 0 0 0 0 0 0
27 0,54 0,52 0,48 0,46 0,36 0,35 0,27 0,25 0,24 0,23
4f 1,23 1,18 1,11 1,09 0,89 0,81 0,71 0,66 0,67 0,61
67 2,08 1,97 1,87 1,72 1,56 1,45 1,30 1,19 1,22 1,11
87 3,06 2,80 2,70 2,51 2,32 2,13 1,97 1,76 - 1,61
10f 4,09 3,56 3,43 3,15 3,11 2,91 - 2,46 - 2,13
07 1,13 1,05 0,94 1,01 0,99 0,90 0,99 0,91 1,09 1,05
2% 1,87 1,69 1,58 1,45 1,52 1,37 1,39 1,29 1,25 1,12
2, 1,36 1,22 1,10 1,02 0,89 0,75 0,79 0,81 0,71 0,80
3 1,88 1,65 1,52 1,41 1,24 1,04 1,09 0,94 0,97 0,88
4, - 1,24 1,80 1,34 1,50 1,35 - 1,29 1,18 1,01
5; - 1,89 2,22 1,96 1,87 1,59 - 1,32 1,49 1,18

The choice of these nuclei for research is primarily due to the fact that their low-energy states
manifest themselves most purely in the presentation of generalized seniority, as noted in [4, 12]. It should
be noted that there is a good agreement between the calculated values of E and the experiment for states
with small angular values),

Table 3 - Relationships of E2 transitions between states in Ru nuclei.

Ji =y 100R,, 102, 104p,, 106p,, 108g,,
Jli'=Jf!
Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor.

4124 1,50 1,47 1,6 1,5 1,43 1,44 - 1,75 - 1,83
2, -0, +0,21 +0,3 +0,20

0, » 24 0,99 0,95 0,76 0,71 0,46 0,41 - -

2, > 04 +0,20 +0,15 +0,06
2, -2, 0,91 0,83 0,90 0,84 1,0 0,82 11,6 52 10,2 6,1
m +0,18 +0,15 +0,02 +1,2 +1,0

2, - 24 15,4 12,0 - 11,4 25 14,5 - 16,0 - 224
2,50, £0,5 +4.0

23> 44 16,2 17,4 8,0 12,6 - 15,2 18,3 18,9
2; -2, +2.5 +2,0

3122, 11 13,2 27 29,3 26 10,4 26 22,4 17 25,6
3, -2, +5,6 +3,0 +3,0 +10 +3

for which the main role is played by the interaction potentials of like nucleonsV,,,,V;,,. The usefulness
of these potentials in these cases is determined by their properties, which well preserve the scheme of
generalized seniority.At the same time, such a purity of the quantum number of the generalized seniority?,
greatly simplifies the calculation procedure and leads to close real energy values for small values of the
spins J, as can be seen from Table 2,3,4.

—— 48 ——
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Table 4 - Relationships of o (E 2/ M 1) transitions between states in Ru nuclei

1005, 10zp,, 104p,, 106p, 108p,,
Ji—Js
Exp. Theor. Exp. Theor. Exp. Theor. Exp. | Theor. Exp. Theor.
2, > 2 3.4 2,9 -6,0 -2,7 -9,0 -4,4 7,1 5,6 4,3 2,9
+0,8 +0,2 +1,4 +0,8
25> 2 3,6 0,25 1,2 0,43 0,25 0,24 0,43 0,87 0,56
+0,03 0,11 0,12 +0,56
3102, 0,45 0,9 0,90 0,6 -3,2 -1,7 -3,8 -5,4 -3,0 -1,4
+0,1 0,15 +0,4 +1,4 +0,95
4, > 4, - 0,17 - 0,26 0,11 0,18 - 0,22 - 22,4
40,11
3102, - -4,3 -7,2 -3,2 - - - -2,3 - 0,27
(10)
4, - 24 - - 0,01 - - - - - - 3,1
(€]
5,4, - - -1,05 - - - - - -
40,05

However, in neutron-protoninteractionsly,,,-begin to dominate the quadrupole-quadrupole interaction,
which strongly mixes states with different senorities.If we restrict ourselves to several protons or neutrons
in the valence shell, then the mixing of components in states with high senority, mainly the lower excited
states, can be included in the calculations of the lower approximation of matrix diagonalization.Due to the
quadrupole nature of the n-p forces, the components of the wave functions of such
asSY Sz’,V (DnDp)Ofractions will mix states of different senoriths, which strongly wag the collectivity of D-
pair-fermion states. Because of this, the discrepancy between the calculated and experimental values of the
energy of states with large J becomes stronger, as can be seen from Table 2,3,4.Apparently, the
hexadecapole component in pn-forces will play a certain role here.In addition, in such calculations, the
single-particle energies were taken constant for all isotopes of the nucleus, whereas they can be varied by
changing the number of nucleons in the shells.However, as shown by calculations for deformed
isotopes'°®Ruthe main properties of the states in terms of energy are reproduced quite satisfactorily, since
they change smoothly.

Table 3 and 4 shows the probability ratios of E2 transitions between different states of Ru
isotopes. They also show satisfactory agreement of their calculated values with experimentally measured
functions, especially for low-lying states.For levels with higher energies, these values differ significantly
more. This is also mainly due to the strong mixing of states with different senorities due to quadrupole n-p
interaction, as well as the neglect of the contributions of G-pair configurations to computational
procedures.In many microscopic models with the method of mapping the fermion space into the bosonic
one, the mapping methods are carried out not through the operators of fermion-boson transformations, but
through the equalities of the matrix elements of the states in two spaces.As was noted [5, 6], these two
spaces are interconnected through the bosonic and fermionic seniority. Such a connection is especially
important for states with high senority, in which np-forces between particles play the main role. And they
can give a fairly large contribution and bosons with large orbital moments.This leads to a change in the
energies of the d-boson states. Therefore, in such calculations with space, it was necessary to renormalize
the parameters of bosons included in the theory or parameters of quadrupole interactions in microscopic
calculations. In our calculations, it was not necessary to lead such processes of renormalization of the
parameters of theories. Despite this, the fermion theory with generalized senority, in general, gives a
satisfactory smooth description of the properties of nuclei with average atomic weights.

CONCLUSION

On the basis of the generalized quasispin approach, the microscopic structure of the collective states
of even ruthenium isotopes in the low-energy region was studied. To solve the many-particle problem in
the space of generalized quasispins of, the potentials of nn, pp, npinteractions are taken in the most general
form, the parameters of which are chosen from a comparison of the calculated values with their
experimental values.
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The description of microstates of nuclei with the help of generalized senority and double tensors,
which express pairwise interaction of nucleons, greatly simplifies the procedure for calculating matrix
elements, which give a good confirmation of the experimental facts on energy of states and on
probabilities of electromagnetic transitions between them, especially for states with small quantum
numbers J. However, the quadrupole interaction operator between different nucleons V,,-strongly mixes
states with different senorities.

This fact strongly influences the formation of the collectivity of the D-fermion states in the systems,
which weakens the consistency of the calculated and experimental values of the energy levels, as well as
the relative probabilities of E2 transitions between them, with large spins J.Nevertheless, the main
properties of deformed nuclei are transferred quite satisfactorily. In some microscopic calculations using
the method of mapping the fermion space into the bosonic space due to the connection of these
representations through fermionic and bosonicsenority, the contributions of pairwise states with large
orbital moments, for example, G-states, increase.Apparently, the divergence of our calculations for a state
with large angular moments and with higher excitation energies also requires taking into account the
contributions to them of G-pair formations. In addition, in the composition of high-energy levels, the role
of that part of the complete Hamiltonian that was not included in the generalized seignity scheme is
1mportant.

K. Bakreiéaes', A. loneaxankeibr’, MLK. Bakrbi6aes’, H.O. Koiiibik'

18J1—<13apa6p1 aterHnarpiKazak ¥uTeIKY HUBepeuTeTi, Anmmatsl, KazakcraH,
2 K.N.CorbaeB areiagarsr Kazak ¥arTeik 3eprrey Texaukansik YHUBEpcutTeTi, AnMatsl, KazakcTan

AJIPOJAP KOJUIEKTUBTIK KYWJIEPIHIH, ®EPMUOH/IBIK TEOPUSJIAPBIH
JKOHE OHbI HAKTBI )KYHUETE KOJIJIAHY

AHHOTanMsl. ATOMJBIK CaJMarbl OpTallla SIPOJIap KOJUIEKTUBTIK KYWIEPIHIH MHKPOCKONTBIK KYPBUIBIMBI
KOCapJlaHFaH HYKJIOHJBIK KaObIKIIa Mojerninae 3eprreneai. Teopusaa yiakeH (HepMHOHIBIK KEHICTIK KallblIaHFaH
CEHBOPHUTH 9Jici keMmeriMeH peanasl SD-omeparopmap meHOepiHe NeliH KpIcKapa Kecuiai koHe OipOenmiexTik
JICHreiiep JKIKTeNMyiHIH >KyHenmeri KyiJiepiH KOJUIEKTHBTIK KYpBUIBICBIHA acepi ae ecemnke aibiHAbl. OchiHAal
KOIOOIIIEKTIK MOCENIeH] IIeNTy YIIiH JKaJIIbUIaHFaH KBa3UCIIMH 9JIiCi MEH KOCapiIbl TEH30pJIap YFBIMBI KOJIAAHBLI/IBI.
Onap Kocapibl MOTEHOHAIAAPIBIH MAaTPULAIAPBIH ecenTeyre oTe Konaiiel. TOJBIK TIaMUJIBTOHMAH Tas3a
(hepMHOHIBIK KEHICTIKTE JOJ AMaroHampAaybl Oipre eHrizinmi. MyHna (epMHOHIBIK orepaTopiapabl OO30HIIBIK
TYpre alHaIABIPYABIH KaXKeTi 0oiaMamsl. Oceprecymri 0030HAap MOAETiHIH mapaMeTpiepi (GepMUOHABIK KOIMEH
ecenrenai. Kypsurran Teopus pyTeHui sSApOchIHBIH N=58-66 >KYITBl H30TONTApbl KYPHUIBICHIHA KOJAAHBUIIBL.
Onapjarbl TOMEri SHEPrusuibl JEHIel CHEeKTPl JKOHE 3JIEKTPOMArHMTTIK E2-aybICy BIKTHMMAIABIFBl €CENTENill,
QIHBIFaH [aMajap KCIIePIMEHTTE TaObUIFaH MOHAEPIMEH CallbICTBIPBIIIBL.

K. BaKTmﬁaeBI, A. I[aneﬂxamcbmbll, M.K. BaKTblﬁaeBz, H.O.Koiiabik'

'Kasaxckuii HAMOHANBHEIH YHHBEpCHTET M. atb-DPapabu, Anmarsr, Kazaxcran
2 Kaszaxckuii HAIIMOHAJFHBIN HCCIe0BaTeNbCKAN TexHrmueckmii yanepceuteT nM.K.M.CarmaeBa
Anmatel, Kazaxctan

®EPMHOHHAS TEOPUS KOJUIEKTUBHBIX COCTOSIHUAM SIJIEP
EE NIPUJIOKEHUE K CTPYKTYPE PEAJIBHBIX CUCTEM

AnHotanusi. Ha ocHOBe HYKJIIOHHO-TIAPHOHW OO0OJIOUEYHOH MOJENnH, B KOTOpOW MeToAoM 0O0O00IEeHHON
ceHbOpPUTH  oOpe3aercs  (DEPMHOHHOE TNPOCTPAHCTBO  "peamuctuueckumu”  SD-omeparopamu,  H3y4YCHBI
MUKPOCKOIIMYECKAsd CTPYKTypa KOJUIEKTUBHBIX COCTOSIHMM SiIEp CPEJHEro aroMHOro Beca. IIpu 3ToM yuTeHsl
BIIMSIHUSL PACIICIUICHHs OJHOYACTHYHBIX YPOBHEH Ha KOJUIGKTHBHO-TNIAPHYIO CTPYKTYpY CHUCTeMbl J[isi perueHus
TaKOil MHOTOYACTHYHOW 3aJa4yd HCMOJB3YyeTCS METON OOOOLICHHOTO KBa3WUCIIMHA U ABOWHBIC TEH30DHI,
o0Jieryaroniue BHIYUCICHHUS MAaTPUYHBIX 3JIEMEHTOB MapHBIX B3aUMOJCHCTBHN HYKJIOHOB. [1ONMHBIA TaMHIBTOHHAH
JHaroHAIM3yeTCs TOYHO B (DEPMHOHHOM INPOCTPAHCTBE 0€3 MPUMEHEHHs NPOLeNyphl 0TOOpaXkeHHs (HEepMHOHHBIX
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orepatopoB B 0O30HHBIC. BEIMHCICHBI TapaMeTpbl MOJECIM B3aUMOJCHCTBYIOIIMX OO30HOB Ha OCHOBE
nepesaraeMoro (epMHOHHOTO MoAxona. Teopust NMPUIIOKEHa K H3YYEHHIO CBOMCTB KOJUICKTHBHBIX COCTOSHUI
YETHBIX M30TONOB pyTeHHsI ¢ N=58-66. BBIUUCICHBI CIIEKTP COCTOSHUI HHU3KUX SHEPTHH TakKe BeposTHOCTH E2-
NIEPEXO0JI0B B HUX U OHU CPABHEHBI C HMEIOIMMHCS SKCIIEPUMEHTAILHBIMHI JaHHBIMH.
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