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ABOUT SINGLE OPERATOR METHOD OF SOLUTION
OF A SINGULARLY PERTURBED CAUCHY PROBLEM
FOR AN ORDINARY DIFFERENTIAL EQUATION n - ORDER

Abstract. In this paper, by the method of the deviating argument, we obtain an asymptotic expansion
of the solution of the Cauchy problem for an ordinary differential equation of n — th order with variable
coefficients, with an estimate of the residual term through the right side of the equation. Many papers
devoted to this topic are of an applied nature, and their estimates of the residual term are expressed in
terms of O —large or o —small, so they have a theoretical value rather than applied, as they claim. The
main advantage of the proposed method is the simplicity of its algorithm, and the residual term formula,
explicitly expressed through the right side of the equation, and its evaluation.

Keywords: Singular value perturbation, spectral decomposition, deviating argument, residual term
estimation, self - adjoint operator, Gilbert-Schmidt theorem, completely continuous operator, Friedrich’s
Lemma, Cauchy problem, asymptotic expansion, small parameter.

1. Introduction. Many problems of mechanics, physics, engineering and other fields of science
lead to differential and integro-differential equations with a small parameter at the highest derivative. A
systematic study of such equations (at present they are called singularly perturbed) began after the
appearance of the fundamental works of A. N. Tikhonov [1-3], drew the attention of many researchers to
equations with a small parameter at the highest derivative. In these works, a General formulation of the
Cauchy problem for systems of nonlinear ordinary differential equations with a small parameter at the
highest derivative is given, and theorems on the limit transition are proved, establishing a connection
between the solution of the initial singularly perturbed Cauchy problem and the solution of the
unperturbed problem obtained from the initial at zero value of the parameter.

One of the important problems of the theory of singularly perturbed equations is the construction of
asymptotic expansions of solutions of equations by a small parameter.

Among the asymptotic methods developed for singularly perturbed problems, it should be noted a
very effective method of the boundary functions proposed By M. L. Vishik and L. A. Lyusternik [4,5] for
singularly perturbed linear and partial differential equations, as well as for the singularly perturbed
nonlinear ordinary differential equations, and M. 1. Imanaliev [8,9] for singularly perturbed nonlinear
integro-differential equations. This method is now called the " Method of boundary layer function".
Further development of this method is connected with the works of V. F. Butuzova [10,11], V. A.
Tupchiev [12] and V. A. Trenogin [13].

S. A. Lomov [14,15] developed a method of regularization of singular perturbations, which allows to
reduce the singularly perturbed problem to the regularly perturbed ones, with the help of which it is
possible to develop the foundations of the General theory of singularly perturbed equations. The method
is applicable to a wide range of problems for ordinary and partial differential equations.

17
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In this paper, we propose a new method for solving singularly perturbed problems, which
originates from the spectral theory of equations with a divergent argument. The essence of the method is
as follows: the solution of the problem is decomposed into a Fourier series by eigenfunctions of the
corresponding boundary value problem, then the coefficients of this series are transformed by integration
in parts. As a result of these transformations, we obtain a new (recurrent) representation of the solution of
the original problem. Further, by the method of mathematical induction it is possible to obtain an
asymptotic expansion of the solution of the problem of interest to us. The remainder of the obtained
decomposition is estimated by a priori estimates. With the help of direct calculations, the generality of the
obtained recurrent formula is shown, and additional conditions that appeared in the course of research are
removed. This work completes a series of studies devoted to the development of a spectral method for
solving ill-posed problems [17-25].

Problem statement. Consider in the space H = L?(0,1)the singularly perturbed Cauchy problem

Ley(x) = ey™(x) + a; )y P (x) + -+ + ap () y(x) = f(x), (1)
y(0) =0,y'(0) =0,..,y®1(0) = 0, ()

where a;(x) - are real and sufficiently smooth functions on the interval [0,1], f(x) € L2(0,1), € > 0 —
small parameter. The question is how the solution of this problem behaves as ¢ — 0, depending on the
behavior of the coefficients a;(x),i = 1,7n and the right partf (x)? With the help of the spectral theory of
the equation with deviating argument, to obtain the spectral decomposition of the solution of this problem
in the space of the crane, and bring with it the asymptotic representation of the solution with the
assessment of the remainder term through the right part of the equation.

2. Supporting proposals.
The Cauchy’s problem (1) - (2) corresponds to the linear operator

Ly =ey™@) + a;(0)y™ D(x) + -+ a, )y ) = f(x),

with the range of definition

D(Le) = {y(x)eC™[0,1];¥(0) = 0,y'(0) = 0,..,y "D (0) = 0},

and with the range of values R(L,) < C[0,1] contained in the linear variety of continuous functions.

We want to use theory of Hilbert — Schmidt on the spectral decomposition of a completely continuous
and self-adjoint operator, therefore we give appropriate definitions and facts from the theory of linear
operators.

Lemma 2.1. Let A be a densely defined operator in a Hilbert space H. Then

(a) A™ exists and is closed;

(b) A admits a closure if and only if D(A*) is tight in H, and in this case 4 = A**;

(c) if A admits a closure, then (A)* = A%;

(d) if A - admits a closure and is invertible, then A~ admits a closure and (4)~! = AT,

(e) the continuous operator always admits a closure to D(4) by continuity.

Lemma 2.2.

(a) If a densely defined linear operator A in a Hilbert space H has a continuous inverse A™1: H —
D(A), then A* - has a continuous inverse (A*)"1:H - D(A*) and (4*)"! = (4™ V)%

(b) If a linear operator A in a Hilbert space H is densely defined and closed and A* has a bounded
inverse, then A has a bounded inverse, and (A™1)* = (4*)~1.

The proofs of this Lemmas 1, 2 are contained in many manuals on functional analysis [see, for
example, 16].

Definition 2.1. An operator A™ is called formally adjoint to an operator A if for all u € D(A) and
v € D(A%) the equality

(Au,v) = (u, A v),

— 18 ——
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It is obvious that the operator A* adjoint to A coincides with the formally adjoint operator which has
a maximal domain.
Lemma 2.3. The operator formally adjoint to the operator L, has the following form:

n-—1
Ltv = (~D"ev™ () + (~D)" 7 [a (vl +
n-2
D2 [a, V@] + - = [ap- (O] + ap (Iv(0),

D(L}) = {v(x) € c"[0,1];v(1) = 0,v'(1) =0, ..., v V(1) = 0}.
Proof. If u(x) € D(L,) n v(x) € D(L}), so0
J3 u™@v)dx = [} v(0)du®™ D (x) = vEu® D) -
— [ v U D ()dx = — [J v (u D (x)dx = - =
(=)™ [ uC)v™ (x)dx;
[} a1 (u D w0 dx = [ ay ()vu® D () dx = a, ()v)u? ()|}
— [ la: ()] w2 ()dx = — [ [a, (v ()] u (x)dx = -+ =
= (=" [Jla, ()] Vu(x)dx,
J; a;u™ D (v ()dx = (=12 [ u@)[a, ()v(0)] D, ..
Iy anat GOU () dx = [ oy (W)U () = @y CIVEIUGOLE —
= Jy a1 V()] u)dx = = [ u()[an_; ()v(x)] dx.
Therefore,
(Leu,v) = fol{e(—l)"v(") (@) + D" Ha; v )]V +

(=D 2[a, () v()] ™D + o+ o — [a 1 (D] +
+a,(x)vx)ulx)dx = (u,LTv),=>

[a; (xx)v(x)] +

dTL—l
dxn-1

L*v(x) = (-1D)"ev™(x) + (-1)"!

dn

(~D"2 L [, v )] + = [ @] + 3, (),

that's what was required to prove.

By virtue of the Friedrich’s Lemma, the linear variety of infinitely differentiable and finite functions
C5(0,1) is tight in space H, therefore both operators L, and L} are tightly defined in this space. Then, by
Lemma 1, the operator L% exists, and is closed, L, permits the circuit, and L, = L¥*, (L,)* = L%. By virtue
of one of the theorems of the theory of Hilbert spaces there is a formula:

H =R(Ly) @ N(LY) = R(Ly) @ N(L,),
therefore, for the existence of the inverse operator (L.)~! is necessary and sufficient fulfillment of the
equality R(L%) = H. Then, by virtue of paragraph (d) of Lemma 1, we have the formula (L,)~! = (L71),

i.e. the inverse operator to the closure of the operator L, can be found using the closure of the operator
L7, which exists due to the existence of the operator (L,)~1. If D(L,)~! = H, then by the Banach
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theorem about closed graph operator (L.)~? is restricted in space H. But the problem is precisely that.
Without further information, we cannot confirm this.

We show that R(L%) = H, note for this that LF c L%, therefore R(LY) € R(LL). If R(L}) = H
then the required statement follows.
Lemma 2.4. If the function is K (x, t), for a fixed value of t, the first variable x is the solution of the
Cauchy problem of the following homogeneous equation:

et a0 T+ 4 e () =+ a4, ()| K, 0) = 0,
K a2

| oV
Poxle=y T T 9xm2

axn—l

K, )]ey = 0

=0,¢
t=x

=1, A3)

t=x

that function

y() =y(e f) = [T K@, Of©)dt = [J 8(x — K (x, Of (D)t 4)
for any continuous function f (t), is the solution of the Cauchy problem(1)-(2).
Proof. If f (t) is continuous on the [0,1] segment, then the function (4) is continuously differentiable
and the formula holds:

x 0K

y () =K@x) f0)+ [y 3

therefore with condition (3), we have

5, f(Oadt,

y @) =y Ef@at,

we have
(m) _ x 0MK _
yMW@) = [[omfOde, 1<sm<n—1;
! "
yO ) =S| F@+ [ S o
Consequently,
L an—l
ey™(x) + Z a () y" R (x) = ¢ =T ACOR,
k=1 t=x

LT[ 2K 4 S a0 2] F 0yt = £().

Definition 2.2. The function K(x,t) - 8(x — t) is called the Cauchy kernel of the integral operator
(4), where 6(x) is the Heaviside function.

We will return to the study of Cauchy kernel properties a little later, and now we will deal with the
solvability of the Cauchy problem. It would be tempting to deduce this statement from the formula
R(LY) = H, but from the form of the formally adjoint operator L¥, it is obvious that this path requires a
certain smoothness of the coefficients of the equation L,y = f, o we will deal with the equation itself

y = f, especially since we have already shown the dense solvability of this equation. The uniqueness of
the solution found follows from the following a priori estimates.

Lemma 2.5

If a; (x) is a continuous function on the interval [0,1], satisfying the condition
(@) a;(x) = a>0,vx € [0,1]

and on the domain of definition of the operator L, the inequality holds:

(b) (Zh—, ax ()Y (), y" D (x)) 2 0, ¥y € D(Le);

then the following a priori estimates take place:

— 20 ——




ISSN 1991-346X 2.2019

, . _ _ L
Iyl < 191 < Iyl .. < [y2| < [lye-D) < L2l ©6)
Proof. Multiplying both sides of equation (1), scalar by the function y ™1 (x), we have
(Lsy,y(n—l)) — (gyn,y(n_l)) + (aly(n—l)'y(n—l)) +

(Z “k(x)y(”"‘)'y(”_l)> = (f,y®V)

k=2
then
1 1
(ey™,y V) =¢ f y™y®=D (x)dx = ¢ f Yy D (x)d y™(x) =
0 0
a0 elymD )
ey V@I _ ey @]
= = 2 0;
2 2
0
SO

1

aly I < [ @ [y ar < (L v ) < (1) <
0
< AN [y =2 ally®™2l < 1l

As, y(0) = 0, then y(x) = [ y(t)dt,

- AN ILeyll,
o] < 1 - bt

a b

@I < (J; 12at)? (f, 92 @t )’ ly@? < [ de [ 52 (@0)de < x [} y* O,
1

X
ly(I? < XIa'fz(t)dt < f}'fz(t)dt.=> IyllZ < 7112, => liyll < Iyl
0 0

In a similar way, we have
Iyl < Iyl . < [ly@=2) < lyeo| < B2 )

Thus, there is an inverse operator L1, therefore, by virtue of item (d) of Lemma 1, L;1 admits a
closure and (L—gl) = (L,)". Lemma 4 that R(L,) coincides with the linear diversity continuous on [0,1]
functions that is dense in the space H, therefore m =H,butL, ¢ L,,=> R(L,) € R(L,), so a fortiori
m = H. By virtue of a priori estimates (5) R(L,) = R(L,). Indeed, if y € D(L,), then there is a
sequence {y,} € D(L,), such that y, -y, L.y, = f, = f, then it follows from (5) that the sequence
{yrsk)} (k=12,..n—1),n=12,... in the space H, which means that y(x) € WJ*"1[0,1] u v, (x) —
y(x) in the space WJ*~1[0,1]. Passing to the limit in inequalities (5), we get:

Iyl < [l < - < [|y@-v]| < Ll ©

If z(x) € R(L,), then there exists a sequence {z,(x)} € R(L,), such that z,,(x) = z(x) in H. Then
the sequence z,(x) = L.y, fundamental in H, and in virtue of a priori estimates, the sequence {y, }is
fundamental in the space of WJ*"1[0,1], which means that y, =y, y; =¥, .., ylgn_l) - y-1),
L.y, = z(x), i.e. there exists a function y(x) € D(L,) such that L.y, = z(x), that is, z(x) € R(L,), as
required.

Thus, (L.) texists and is defined on the whole space H, since

D(Ze)_l = R(Ze) = R(Es) =H,
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then, by the Banach theorem, the operator (L;)~! is bounded; this is also obvious from the obtained
inequalities (6). By virtue of clause ¢) of Lemma 1, (L,)* = L%, therefore by virtue of clause a) of
Lemma 2, the operator L} has a continuous inverse

(L)1 H > DLy and (L)1 = ()™ = (7)) = @:h)~

From inequalities (6) it follows that

1
(TP | MeyIP\E _VE
||y||2+||y||2§< S+ =) <,

those, the operator (L)~ translates a bounded set into a compact one, therefore it is completely
continuous, by Schauder's theory, the operator (L™1)* is also completely continuous.

Definition 2.3. The closures of the operator L, are called the Cauchy operator and denote by C,, i.e.
C. =T,

Lemma 2.6. Under the conditions of Lemma 5, the Cauchy operator C, is bounded invertible, and the

inverse operator C, ™1 is completely continuous in the space H, moreover, the equality (L:)™1 = (L71)*.
Lemma 2.7. If

( _
Lyy(x) =ey™) + ) ap_mx)y™(x),
i 2
D(Ly) = {y(x) € €™[0,1],y(0) = 0,y'(0) = 0, ...,y (0) = 0},
n-1

Lt2(x) = (=D)nez™ + Z(—l)k[an_k(x)z(x)](k),
k=0
D(LY) = {z(x) € c"[0,1];2(1) = 0,2'(1) =0, ...,z V(1) = 0},

and the operator S is defined by the equality Su(x) = u(1 — x), then the equality SL, = L{S holds if and
only if

Anom(1 = x) = XR2E (=)™ a® ™ (x),m = 0,1,2, ...,n — 1. (7)

Proof. According to the Leibniz’s formula

k
k
[an—kv](k) = Z Cﬁnv(m) 7(1—km)

m=0

therefore

n-1 n-1

D Dy (0] = Z(—l)k Z a0 v () =

k=0 k=0

-1rn
B Z [Z ~D¥erays, m)(x)] v (x).
m=0 Lk=m

Therefore,

Ltz(x) = (~1)"e z(n>+z [z( Dkcra m)(x)] 2 (x),
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Then

n-1

SLyy = ey(n)(l —-x)+ z Ap_m(1 —x) y(m)(l —-x),

LtSy = (1)"e(sy)™ + 2[Z< D¥ay @) |- ()™ =

m=0
n-1

n-1

=ey™1—x) +

(—D¥erays, m)(x)]( DMy™ (1 - x).

m=0 =m

Equating the corresponding coefficients of these expressions, we obtain the formula (7).
Lemma 2.8. If
(a) Su(x) = u(l —x);

(b) Ley(x) = gy(n) + an_:lo Ap—m (X) y(m) (x);y € D(Lg);

(©) tpom(1 — %) = YL (D)™, ca* ™ (x),m = 0,1,2,..,n — 1,
then the operator SL, is symmetric in the space H.

Proof. If y(x) € D(L,), i.e. y(x)C™[0,1], and y(0) = 0,y'(0) = 0, ..., y™*~D(0) = 0, then Sy(x) =
y(1—x) € D(L}). In fact, it is obvious that Sy(x) € €™[0,1], and [Sy(x)]™ = (—=1)™y™) (1 — x),
therefore, [Sy(x)](m)|x= , =0, m=012,..n—1. By virtue of the previous lemma, the equality
SL, = LtS, holds; therefore, for all u(x) and v(x) € D(L,) we have (SL.u,v)= (L.u,Sv)=
(u, LtSv) = (u,SL,.v).

Lemma 2.9. If

(a) Su(x) = u(l —x);
(b) Lsy(x) = gy(n) (x) + Z 0 an— m(x) y(m) (x)
y(x) € D(L,) = {y(x)Cc™[0,1]; y(0) = 0,y'(0) = 0, ...,y "D (0) = 0},

then equality takes place
ST, = SL,,

where the bar (7), as usual, means the operator's closure operation.

Proof.

Suppose that the operator SL, is not closable, then there exists a sequence u, € D(L,) such that

n—0, SL.u, > f €Hand f #0. Then u, € D(L,), Lyu, = SSL,u, - Sf # 0, therefore L, is also

not closable. Similarly, the non-closure of the operator L, implies the non-closure of the operator SL;.
Therefore, the operator SL, is closable if and only if we close the operator L. If u € D(L,), then there is a
sequence u, € D(SL,) such that u, — u, L.u, — L,u, therefore, u, € D(SLS) and SL,u, — SL.u..
Therefore, u € D(SL,) and SL,u = SL.u. Thus, if u € D(L,), then u € D(SL,) and the equality SL,u =
SLgu holds.

Conversely, let u € D(SL,). Then there is a sequence u, € D(SL,), such that u,, - u and SL.u,, >
SLgu, since D(SL.) = D(L,), then u, € D(L,) and L,u, = SSL.u, - S(SL.u), and this means that

u€D(L,) and L,u = SSL.u, i.e. SL, = SL,.

Consequence 2.1. The operator SL, is self-adjoint in the essential in space, i.e. (SL.)* = SLj.

Proof. The operator SL, is symmetric, therefore, the operator SL, is also symmetric. Since SL, =
SL, and R(L,) = H, then R(SL.) = H,=> R(SL,) = H. From the symmetry of the operator SL, it
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follows that SL, © (SL.)*, passing to the closure, and taking into account the closedness of the adjoint
operator, we get the inclusion SL, c (SL,)*, and since R(SL,) = H, then R(SL.)* = H and R(SL,) =
R(SL,)*. Therefore, taking into account the invertibility of these operators, we have

D(SL.) = D(SL.)* mmostomy SL. = (SL.)*.

So (SL.)* = (SL.)** = SL,, that's what was required to prove.
Lemma 2.10. If the k - th coefficient of equation (1) is n —k (k = 0,1,2, ..., n) times continuously
differentiable on the interval [0,1], and satisfies the following conditions:

@) a;(x) =a>0;
(b) (Zhz ()Y ™0 (), y @D () = 0¥y € D(L);

(©) pem(1 = x) = 2L (D™, ™ () m = 0,1,2,...,n — 1,

where cj* are binomial coefficients, then the SC, operator is self-adjoint in the space H, and has a
completely continuous inverse, where C is the Cauchy operator.

3. Main Results.

Theorem 3.1. If the k -th coefficient of equation (1) n—k (k =0,1,2,...,n) is continuously
differentiable on the interval [0,1] and satisfies the following conditions:

(@) a;(x) =a>0;

®) (Zh=2 )y (@), y "D (X)) = 0.y € D(Le);

(©) Gpom(1 — x) = TR (D)™, ™ () m = 0,1,2,...,n — 1,

where ¢j* are binomial coefficients, then the Cauchy’s problem (1) - (2) is strongly solvable and this
strong solution has the following representation:

0 (S ’ n)
Y00 e, f) = Tiet 522 9a (), ®)

where 4,, (n = 1,2, ...) - are eigenvalues, and ¢, (x) (n = 1,2, ...) are eigenfunctions of the operator SL,,
the S operator is defined by the formula:

Su(x) = u(l —x).

Proof. By Lemma 10, the operator (SC,)~! is completely continuous and self-adjoint,
therefore, according to the Hilbert — Schmidt theorem, the decomposition takes place

(SCI TS = Tier 522 0n () + 00 ),

where ¢@q(x) € ker(SC,)™! and {@,,(x)} (n =1,2,...) - are orthonormal eigenvectors of the operator
(SC)™L, and A5t (n = 1,2, ...)the corresponding eigenvalues of the same operator, then (SC,) 1@, =
0,=> ¢y = SC.(SC.) tp, = 0, therefore

(SCT () = Ty L2 g, ().

If for some function f(x) € H there is the equality (f,¢,) =0 (n = 1,2,...), then (SC,)"1f = 0,=
> f = 0, the system of eigenfunctions {¢,} is complete in H. Since, by virtue of the self-adjointness of
the operator (SC,)™1, this system is orthogonal, after normalization it forms an orthonormal basis of the
space H.

We now return to the Cauchy’s problem (1) - (2).

Ley(x) = ey™(x) + iy 4 () y® R (x) = f(x), x € (0,1],

y(0) =0,y'(0) =0, ...,y 1D(0) = 0,
—— 4 ——
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or in operator form:
Ly=f.

Acting by the operator S on both sides of the equation, we get
SL.y = Sf.
Therefore, for all y(x) € D(L,), the equality
SCey = sty = SL.y = Sf,
So

y() =y, f) = (SCITISF = ) (SCTSF pn)pn () =
n=1

© © S o
= N £ e onen = Y L 6o,
n=1 n=1 n

The equation for the functions is:

(SC) ™ on = ‘p’;(x), Ap#0,n=12,..

or
Co S = 229, (1) 1S, = 222
So P, (x) = S, (x), we have
(L) () = 22
or

S (1) = A (L) ™ P (1) = A, (LD () = Ay, ) K(x, 8) Yy (D).

If ¥, (t) € L?(0,1), then from this equation we see that [Si,, € WJ*[0,1], then ¢, (x) € W*[0,1]. If
on(x) € WJ[0,1], then Sy, (x) € W2™[0,1], then ¢, (x) € W£™[0,1], continuing this process, we obtain
that ¢,(x) € C*, i.c. infinitely differentiable. Therefore, any function belongs to the domain D(L,),
therefore

An@n = SCey = SLepp = SLepy, =>

Ls(pn(x) = AnS(pn(x)a n=12..
Therefore,

{ecp,ﬁ’:) () + a; DXV (x) + + + ()P () = L@ (1 = %) = 1 S (%),

P (0) = 0,0 (0) = 0, ., 0 " (0) = 0,
For further clarity, we will study the properties of the operator B, where

{Bu(x) = a; Du™ ™V (x) + a, D)u™ D (x) + - + @, (Dux),
D(B) = {u(x) € ¢"1(0,1) n €™ 2[0,1];u(0) = 0,u'(0) = 0, ...,u™2(0) = 0,

denote these equations as (9)-(10).

Theorem 3.2.

(a) If k -th coefficient of operator (9)-(10) n — k times is continuously differentiable on the interval
[0,1], then one of the formally adjoint operators of operator B has the form:
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B*tv= ) (—D)" ¥[a,(x)v(x)]"P,
(D) =0,v(1)=0,..,v"2(1) = 0;

(b) if there is equality

p-m(1 — %) = TR2h (= D™k mal ™ (), m = 0,1,2,...,n — 1,

where ¢~ are binomial coefficients then
SBu = B*Su, Yu(x) € D(B).

Proof. If u € D(B) and v(x) € D(B%), so

(@) (Bu,v) = (Bfo1 a )u™9,v) = T1_ (a, ()u™9,v);
1

1
(0, u™9,v) = (av,u®P) = j aru™ R dx = f avdu@ k-1 =
0

0
1

1 ,
= akvu(”'k_1)|0 - f(akv) uM=k-Dgy = akvu("‘k‘1)|(1) —
0

1

' 1 , 1
— f(akv) du(n—k—z)dx — akvu(n—k—1)|0 —_ (akv) u(n—k—z)lo +
0

S

-1
m=0

(akv)m(_l)mu(n—k—l—m) |(1) +

n

1
+ f(akv)'u("‘k‘z)dx =
0

1

F(—1ynt j (@) ™ Ou(odx,
0

Therefore,
n n-k-1 n
(Bu,v) = Z (akv)m(—l)mu(n‘k‘l‘m)LI) + Z(—l)”‘k(u, (av)R))
k=1 m=0 k=1
n
= [ul U] + (u, 2(_1)n_k(akv)(n_k)>J
k=1
where
[,v] = By S5 (@)™ (— Dmuek M )|
If

u(0) =0,u'(0) =0, ...,u™2(0) = 0;
v(1) =0,v'(1) =0,..., v (1) =0,

therefore [u, v] = 0, so (Bu,v) = (u, BTv), where

By = ¥y (~1)" K ()R,

— 26 ——
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(b) If u(x) € D(B), we have it Su(x) € D(B™) and expression B Su it has sense

k=m,
B*S =Z 1nk S (n— k)_n
u= ) 0 s e

n-—1

Z ( 1) (an msu)(m) Z( l)m(an mSU)(m)

m=n-—-1

Z( 1)mz (m k) k(Su)(k) Z( 1)m+k (m k) kSu(k)
k=0

(Z_: Z_: 1)m+kqC (m— k) k)su(k)

k=0 m=k

A 4

v

m=n—1m

n—1 n-1
SBu=S Z ay_u® = Z Ay (1 —x) Su® =
k=0

n—-1

Z (Z( 1)m+kc,’fna(m k)> Sul® = B+gy.

=0

By Lemma 10, the operator SB is in the space H. Therefore, (SB)* = SB = SB, (SB)* = SB,
(B)*S* =SB, (B)*S=SB, B*S=SB, B*=SBS, (B")"1=S"1(B)"1s" 1 =S(B)71S, S(B") ! =
(B)~1s,S(B~YH)* = (B~1)S, (B~1)*S = S(B~1),that's what was required to prove.

Theorem 3.3. If the k - th coefficient of equation (1) is n —k (k = 0,1,2, ...,n) it is continuously
different once on the interval [0,1] and satisfies the following conditions:

@ a,(x)=a>0;
®) (Ziz 4 ()y ™0 (@), y V() = 0¥y € D(L,);

(©) Gpom(1 — x) = TR2L (D™, a® ™ () m = 0,1,2,..,n — 1,

where ¢}* -are binomial coefficients, then the formula holds:

P(x) = Yoo, 222D (), (1)

Am

where
o (@) + a1 P @) + -+ + an (P () = L SPm (%);
o (0) = 0,0,(0) = 0, .., 0 " (0) = 0,
and Y (x) - is a solution of a homogeneous equation
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ep™ () + a; (PP () + - + @ (DY) = 0 (12)
satisfying the initial conditions:

¥(0) =0,4'(0) =0,..,»p™2(0) =0, Y(0) = 1.

Proof. Noting that ¥ (x) € D(B) we rewrite equations (12) in the form g™ (x) + By (x) = 0.
Noting also that ¢,,(x) € D(B) and ¢,,,(x) € D(B)we rewrite the equations of the functions as

P (1) + BPp (%) = AnSPm (%), SPp (x) = 9 (1 = X).

Using these two formulas, we calculate the Fourier coefficients of this function SBy.
(SBY, @m) = (SBY, B~ S@m — eB0) = An(SBY, B~'Spy) —
—& (SBY, B0Y) = A (B™1)"SBY, Sp) — £ ((B)"SBY, 0 ) =
= An(SB7TBY, S¢y,) — € (SB1B, o) = By € D(B™) < DB D) =

= An(SBT'BY, Spm) — £ (SBTBY, 0 ) = A, @) — £ (S, 0 )
Using integration by parts, we transform the scalar product
(sw. o1)-
1 1
1
(sw. o) = f swd o 00 =59V @) - f S¥) ol () dx =
0

0
1 1
=y =090 - [ Gw eV wdx = - Wi @
0

n-1 1

(sw.00) = > DFEPPPE POl + (-1 ] (SY) ™ g (x)dx =
k=0 0
n—1
= D EDF DO - I @)+ D
| =0 L 1
[0 0pnedx = Y 9O -0 00|+
0 k=0

1
+ f lp(n)(l — x)pm(x)dx = l/)(n_l)(o)(Pm(l) + (Sl/)(n)'(pm) =

0
= o (D) + (SY™, ¢y);

Operated by the operator S on both sides of the equation

e (x) + By (x) = 0,

we have
eSY™ + SBY(x) = 0, SYy® = — L

Therefore,
(5™, 0m) = (= ==, 0m).

— 28 ——
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SO

. (5¢ fp(”)) = om(1) — (SBw.wm)
(0]

(SBY, 9m) = A (P, @) — €9 (1) + (SBY, @) , => 1y (Y, @1y) = €90y (1),

o = 2D ) = 2@ o) om0 = Y 2D ),

m=1

that's what was required to prove.

Apparently, the formula (11) has independent value, for example, for the solution of inverse
problems.

Now, using the formula (8) we derive a recurrence relation for the solution of the Cauchy problem
(1)-(2). For convenience, we'll rewrite it first

Y66, f) = Dines 2 0y (). ®)
Using integration by parts, we transform the coefficients of this series.
(S, 9m) = (SF, AmB " S@m — eB72 0 ) = A (Sf, B~Sppm) —
& (S£,B70%) = An((B~"Sf, Som) — £ ((B=Y'Sf, 0 =
|(B71)"S = SGBD)| = An(SBf,S¢m) — £ (SB71f, 0) =

= A (B f, 0m) = (SBf,0%);

n—-1
— IR |
(sBF.08) = > 0BT o0+
k=0
1 n-1 )
+(—1)”f(SFf)(")<pm(x)dx :ZS(Ff)(k) pG )| +
0 k=0 0
(n-1)

©¢n@ + (SEI) ™, o), =>

(n-1)

+ (5B, ) = (B)
Sf,0m) = (B 9m) = €(BTF) " @ gm(D) — £ (SBT) ™, om);

Therefore,

n— m(1 dar —
y(x,e,f) = Bf = (B71f) “(O)ZS"’ ()—£y<x€m3‘1f>=

=B @) — (B) " O - ey (v 6, o ). (13)

Note that the function B=1f as a strong solution to the Cauchy problern belongs to the space
WJ=1[0,1]; therefore, for the validity of the formula obtained, it suffices to require that f(x) € W;[0,1].
Denoting,
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DO =1D="LFT

T daxn >
rewrite the formula as:

y(x,&,f) = B7Df(x) — (B7*D° )"V (0)y(0) — ey (x, & Df).
Further,

y(x,&Df) = B'Df(x) = (BT'DAH D (0)p(x) — ey (x, &, D*f), =>
y(x,& f) = B7DOf (x) — (B1DO /)™= D(0)p(x) —
—&[B7IDf(x) — BT'DAH™ V(0 (x) — y(x,&,D*f)] = B7'D°f(x) —
~(B7D° )V (0)p(x) — e[B7Df (x) — (BTDAHTD(0)y(x)] +
+&2y(x, &, D%f).

Continuing this process by the method of mathematical induction, we obtain
n-1

y(e ) = ) (~DF[BIDR ) = (5704 0] ek +
k=0

+(—1)n5n}’(x; &, an):

where ||y(x, &, D" )| < @. From this formula it is seen that, if f(x) € W;'[0,1], then D™f €

L%(0,1) and y(x, &, D™f) € W}'[0,1]; the function ¥ (x), at least n - times continuously differentiable.
D*f(x) e W}¥[0,1], B7'D*f(x) e W™ %1 For k=n—1, B7'D"1f(x) € W}[0,1]. We
formulate the result.

Theorem 3.4. If the k - th coefficient of equation (1) n — k times is continuously differentiable on
the interval [0,1] and satisfies the following conditions:

(@) a;(x) = a>0Vvx €[0,1];
®) (222 e (@y ™0 @),y "D () = 0¥y € D(L,):

(©) Gpm(1 — %) = TR2L (D)™, ™ (0)m = 0,1,2,...,n — 1, (14)

where c}* - are binomial coefficients and the right part belongs to the space W,'[0,1], then the solution of

the Cauchy problem (1) - (2) also belongs to the space W;'[0,1] and admits an asymptotic expansion of
the form:
n-1

yef) = Y (D [BDkf0) — (B4 )" P 00| e +
k=0
+(—1)n€n}’(x' g, an);
where

n ID™ Il o _ _at =
lyCe,e, D"l <=, D° =1, D = ——BL.

{BZ(x) = a; )z V() + a ()2 (%) + - + a4 (0)z (%),
z(0) =0,2'(0) =0, ...,z (0) = 0;
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{ ™) + a; PV () + - + a, (O)Y(x) =0,
¥(0) =0,1'(0) =0,..,»™2(0) = 0, (0) = 1.

4. Discussions.

Remark 4.1. Whether it is possible to prove the recurrent formula (13) directly, by direct
computations, if possible, we would get rid of the conditions (14) that are needed for the self-conjugacy of
the operator SCs.

By virtue of the known formula, we have
X

gy (x,e, (Ff)(n)) jK(x t)( 1f(t)) dt =

0

= ¢ Z( pym K BT

X

B1f(t)dt|;

atn

oK
+(-1) Of

0

If f € L2(0,1), then B=1f € WJ*"1[0,1], i.e. This function has absolutely continuous derivatives up
to the n — 2 - order and a derivative of the n — 1 - order that is summable with square. Thus, all

. — \(k . . . — \(k
derivatives (3‘1 f )( ) up to n — 2 - nd order inclusive are continuous and formulas (B -1f )( )(0) make
sense and, moreover, they all vanish.

A little earlier we proved the formula (L)~ = (L 1)*, now we use this formula.
X

Lo f(x) = f K (e )f (£)dt = f 00x — £) K(x, O)f (O)dt,
1 0 1 0 1
Lz g(0) = j K* (e, D) g(6)de = f 8(x — DK (6, x)g()dt = f K(t, x)g(D)dt;

0 0 x

We act by the operator L on both sides of this equality, in the end we get
1

960 = Lz [ K g

X

Now let's calculate the right side, for convenience

1

2(x) = f K(t,2)g(6)dt

X

we have
1aK 161(
70 = =K (€09 Olemr + [ 5090t = [ S @09t
X X
1 1
@) = + K (6 0)9(0dt = I I (gt
z (x) = ) 55z (609 = | 3z &0 .
X X
an—l
zm=D(x) = f e (t,x)g(t)dt,
x 1
)= -2 K ogw| I O e g (dt;
2 = — o (6 X)g ~ Pyl CEI) ;
- X
Therefore
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Liz(x) = (=1)"ez™ + ¥1-1(—1)¥[a,_, (x)z(x)]®);

1 .
[0 COZ(ON® = Z D) 20 J—Z D, [ 25 gt =
1

1 j
f > ok ”(x)ckF g(Ddt = f lan_x COK(E 0@ g(Dde, 1 < k <n - 1;

j=0 x

Therefore,
n-1

Liz = (—1)"ez™ + Z(—nk[an_k(x)z(x)](k) =
k=0

1
0"K on1
(-1re f (L0g (Dt — (-1~ ——K(t,1)g(0

F + .=

t=x
n—-1

1
o"K
-/ [( De o (6 x)+Z(—1)k[an_k<x)1<(t,x>]<k>]g(t)dt—

k=0
—(Dre S KE0g@®)| =g
t=x
Due to the arbitrariness of g(x), we conclude that
n-1
(D)™ 1e e K(t,x)=1

and

LEK(t,x) = 0,

i.e. the first variable, the Cauchy kernel is the solution of the homogeneous equation L.K(x,t) = 0 and
the second variable is a solution of the homogeneous equation L*K (¢, x) = 0.

Now usmg the formula
X

f pCOU™ () dt = Z( 1)y My n=1-m) (¢)|x 4 (—1)n f v (Ou(t)dt,

0 0

. d" =—t
convert expressions: gy (x, &- =B -1f )

dn ; an

ety o 2 p= —

sy(x g, = —B~ f) st(x,t)dan f(®adt
0

n-1 X
MK —— (n-1-m), |" 0K
:glz (—1)mat—m(3—1f)( ! )(t)|0 +(—1)nf = B‘lf(t)dt] -
m=0 0

an—lK o - n—
—e|com TR ENO| - kwoE) " o)+
+e(—1)"fanKFf(t)dt-

) otn ’

— 3 ——
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From the equation
n

0"K
(- 1)" - +BTK(x,t) =0

we have
n

0"K
(-D"e Froie —B*K(x,t).

SO
X

e(—l)”f?TfFf(t)dt = —fB+K(x, t)B-1f(t)dt =
0

0
X

-| [ kG 0BBTr00de + [, 5] | =

0

[k, Bf] - f K(x, O ©)dt =
0 0

X

- f K(x, Of (Ddt;

0
fB+KB TF(E)dt =f F(OB*Kdt = (B-1f, B*K);
’ (Bu, v)o— [u,v] + (u, B*v);

Gentle u = B-1f,v = K, we get
(BB71f,K) = [B71f,K] + (B~'f,B*K),
[u 17] 1211 k— 1(akv)(m)( l)mu(n k-1- m)(x)

n n-—-k-1

[B-1f,K] = z Z (0 K)™ (=1)™(B~ 1f)(n k—1- m)

k=1 m=0

=0.

0

So

-2k

0K
"0t lp=y

K, 6)lpey = 0 =0,

(n-2)

(B=1f)(0) = 0,(B=1f)'(0) =0, ..., (B=1f)"" ~(0) = 0.

Therefore,

dn n—lK (n-1)
€y<xi€d 1f>—8[( 1)nlatn1

B~1f — K(x,0)(B~1f)

t=x

(n-1)

- f Ko, Of(©Odt = B1f ) — (BF) " 0w@) - y(x e f),
0

where Y (x) is a solution to the Cauchy’s problem
™ (x) + a, ()PP D (x) + -+ + a, (x)P(x) = 0,

¥(0) =0,9'(0) = 0,..,p ™ 2(0) = 0, D(0) = 1.

Theorem 3.4 we can now reformulate.

0] -
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Theorem 4.1. If the k - th coefficient of equation (1) is continuously differentiable n —k (k =
0,1,2, ...,n) times on the interval [0,1] and satisfies the following conditions:

(@) a;(x) = a>0Vvxe[0,1];

®) (Zrz 4 ()y ™0 (@), y* V() = 0¥y € D(L,)

and the right part f(x) € WJ'[0,1], the solution of the Cauchy problem(1)-(2) also belongs to the space
W3*[0,1] and admits an asymptotic expansion of the form:

y(x e, f) = SRES(-D¥ [BD*F () — (B7104F) ™V ()] ek +
+(_ 1)n5ny(x: ¢, an);

where

n ”an” 0 _ —d_n——l
lyCe, e, "Il <=, D° =1, D = — BT,

{BZ(x) = a; ()2 V(x) + a, ()2 (x) + -+ + ap () z(x),
z(0) =0,2z'(0) =0, ...,z""2(0) = 0;

{ ep™ () +a; (DY TV )+ + 2, (DY) = 0,
¥(0) = 0,9'(0) = 0,...,» ™2 (0) = 0,1 (0) = 1.

5. Summary. The spectral theory of equations with a deviating argument can be successfully
applied in the study of singularly perturbed problems. The residual term formula can be used to control
current errors in the numerical solution of such problems.
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*Koxa Axmer Slcayu aThiHarsl XaibIKapalblK Ka3ak - Typik yHusepcuteti, Typkicran, Kasakcran;
*M.0.9ye30B atsinarsl OHTyCTiK Kaszakcran memnekeTTik yausepeuteri, IlIsivkent, Kaszakcran

JKOFAPFBI PETTI KOJIMI'T JU®PEPEHIAJILIK TEHJIEYIIH CUHTYJISIP OCEPJIEHTEH
KOIIY ECEBIH IIEIIYAIH OMEPATOPJIBIK 9/1ICI TYPAJIbI

AHHOTanusi. by eHOeKkTe apryMeHTiH aybITKBITY SAICIMEH KOJIMIi m —peTTi auddepeHnnanibk TeHaey/IiH
CUHTYISIp ocepieHred Komm eceOiHiH ImemimMi acCMMTOTHKAaIBIK KaTapra TaparbULIbl. AJl KaTapjblH KaJblFa
TEHJICYIIH OH >KarbIHIaFbl 0OC MYyIeci apKbUIbl OarajnaHbl. ByJl cajaHbIH KONTereH eHOCKTepl KoAesi caHaabl
JKOHE 0JIap TEXHUKAJBIK MOCENIENEPMEH THIFbI3 OalIaHBICTHI, MyMKIH, COHIBIKTaH Goap, ajbiaFad Garamuap O -
YJIKEH Hemece O - Killi Iamajiapbl apKbUIbl OPHEKTEIreH, COHIBIKTAH OJlap TEK TEOPHSUIBIK Ma3MyHFa We,
COH/IBIKTaH HAKThl KOJIEre jKapamaiijibl, COFaH KapamMacTaH MYHIail >KYMBICTap KETIll apThiaajbl. ¥ ChIHBUIBII
OTBIPFaH €HOEKTIH HETI3rl apThIKIIBUIBIFbL, aJITOPUTIMIHIH KapanaibIMIbUIBIFBI MEH KaJJBIKTBIH (pOopMyackl Oosca
KepeK, OJI TeHACY/IIH 00C MYLIECi apKbUIbl ODHEKTEITeH XKOHE HAKThI OarallaHfaH.

Tyiiin ce3nep: CHHTYIISIP OCEPJICHICH, CIIEKTPAIIAl TapalibiM, aybITKbIFAH apryMEHT, KaJl/IbIK MYLICHIH Oarambl,
KaJkpl oneparop, ['minbepr nen LlIMuariy Teopemacsl, acipe y3ikciz oneparop, @puapuxcreiz temMachl, Kommain
ecebl, aCHMITOTHUKAIIBIK TapalibiM, Map/AbIMCBI3 TIapaMeTp.
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YK 517.9
M.Alcbmﬁaenl, A.HI.HIaJmaﬂﬁaeBz, I/I.Op33033, A.Beiice6aeBa’

'PernonanbHbIN COLMATPHO-UHHOBALMOHHDII yHuBepcurerT, T. lllsivkenT, Kasaxcran;
*Mexmynaponusiii yausepeuter Silkway, r. IIleivkent, Kazaxcran;
3 MexnyHapoaHbIN Ka3axCKO-Typenkuil yausepcureT uM.X.A.fcasu, Typkecran, Kazaxcran;
*[Oxmno0-Kazaxcranckuii [ocynapcTennslii yausepcuter uM.M.Ayesosa, r.IlIsivkent, Kasaxcran

OB OJIHOM OITEPATOPHOM METO/IE PEIIEHUSI CUHT'YJISPHO BO3MYIIEHHOM 3AJIAYA
KON JJIs1 OBBIKHOBEHHOI'O JN®®EPEHIIMAJIBHOI'O YPABHEHMUS n-I'0O ITIOPAIKA

AHHOTanusi. B Hacrosmeil pabore, METOZOM OTKIIOHSIOIIETOCS apryMeHTa, ITOJ[yYeHO ACHUMIITOTHYECKOE
pasnoxkeHue penieHus 3agaun Komm [yt 0ObIKHOBEHHOTO An(QEpPEHIIMATBHOTO YPaBHEHNSI N — TO IMOPSIKa C
HepeMEeHHBIMU K03 GHUINEHTaMH, C OLIEHKON OCTaTOYHOTO YIEHA Yepe3 IMpaBylo 4acTb ypaBHEHHA. MHorue paboTsl
MOCBSILEHHBIE K 3TOH TeMe HOCST NPUKIAIHON XapaKTep, U MOJyIEHHbIE UM OLIEHKH OCTaTOYHOTO WIEHA BBIPAXKEHBI
B TepmuHax O —Gomblioe, WM O —Malioe, MO3TOMY HMEIOT TEOPETHYECKOe 3HAUYCHHE, HEXEIH MPHUKIAJHOE, KakK
OHH yTBepKJat0T.OCHOBHBIM JOCTOMHCTBOM IPEASAaraéMoro HaMHM METOJa SSUISieTCA MPOCTOTa €ro alropTUTMa, U
(hopMyJia OCTATOUHOTO WIEHA, SIBHO BEIpayKeHHAsl Yepe3 MPaByIo 4acTh YPaBHEHUS, U €r0 OLICHKA.

KioueBble cioBa: CHHIYISIpHOE BO3MYILEHHE, CIEKTPAIbHOE Pa3l0XkKEHUE, OTKIOHAIOUINECS apryMEHT,
OIIEHKa OCTAaTOYHOTO WIEHa, CAaMOCOIPsDKEHHBIN oreparop, TeopeMa ['mnbepra - [lImuara, BromHe HETPEepHIBHBIN
oneparop, JieMMa Opuapuxca, 3agaya Koim, acHMITOTHYECKOE pa3IoKEHUE, MAJIbIA TapameTp.
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